Empleo del residual de biogás sólido en la fertilización del plátano fruta.

AUTORES: Ricardo Caballero Álvarez ¹ Mirna Vento Pérez ² Pavel Chaveli Chávez ³

Fecha de recibido: 10 noviembre de 2010

Fecha de aceptado: 6 febrero 2011

DIRECCIÓN PARA CORRESPONDENCIA: rcaballero@suelos.eimanet.co.cu

RESUMEN

Para lograr incremento de los rendimientos en el cultivo del plátano fruta, en suelos Ferríticos Rojo Oscuro típico, se utilizó el residual de biogás en su estado sólido, el cual se caracterizó química y microbiologicamente. Se estudiaron dosis de (0, 1, 2 y 3 kg.planta⁻¹); en un diseño de bloque al azar y 4 réplicas. En las mediciones se tuvo en cuenta, el peso del racimo, el número de manos y el número de dedos de la segunda mano de cada racimo. Se hicieron muestreos del suelo al inicio y al finalizar el estudio, para determinar pH (KCl), P₂O5, K₂O y materia orgánica. La caracterización del residual sirvió para conocer sus posibilidades de utilización como abono, las cuales son muy positivas. La mejor dosis encontrada fue la de 3 kg.planta⁻¹, lográndose rendimientos de 56.77 t.ha⁻¹; alcanzándose un beneficio económico de 1 877.78 \$.ha⁻¹; además de un aumento de los contenidos de P₂O₅, K₂O y la materia orgánica al finalizar el estudio con la dosis empleada.

PALABRAS CLAVE/ Residual de biogás, plátano, fertilización orgánica.

Use of solid biogas residual in banana fertilization ABSTRACT

To achieve increment of the yields in banana fruit cultivation, in typical Dark Red Ferritic Soils, the residual of biogas was used in their solid state, it was realized characterized chemistry and microbiological analysis. Doses of (0,1,2 and 3 kg.planta⁻¹) was studied in a random block design whit repetitions. Measurements of the weight of the cluster, the number of hands and the number of fingers of the second hand of each cluster was realize. Samplings of soil to the beginning and ending the study were made to determine pH (KCl), P₂O₅, K₂O and organic matter. The characterization of the residual one was good to know its use possibilities as fertilizer, which are very positive. The best dose was 3 kg.plant⁻¹, which yields of 56.77 t.ha⁻¹; and an economic benefit of 1 877.78 \$.ha⁻¹; also an increase of P₂O₅, K₂O and the organic matter contens was observed when concluding the study, with the used dose.

-

¹ Investigador del Instituto de Suelos. Dirección Provincial; Camaguey

² Investigadora del Instituto de Suelos. Dirección Provincial; Camaguey

³ Investigador del Instituto de Suelos. Dirección Provincial; Camaguey

KEYWORDS/ Residual of biogas, banana, organic fertilization.

INTRODUCCIÓN

En la búsqueda de alternativas de obtención de energía, se han desarrollado las plantas de producción de biogás, con una eficiente producción de gas metano, el cual constituye un combustible de alta calidad para el uso de cocinas, alumbrados entre otros usos. No obstante, el residual que se deriva de estas producciones constituye un buen abono para las plantas, con demostradas propiedades nutritivas para la obtención de buenos rendimientos en los cultivos, (Da Silva, 1979, FAO, 1981 y Fonte y Gandarilla, 1999).

El residuo producido a partir de la cachaza, según Arcia y col (1986), presenta valores de sus elementos en porciento similares a los de la propia fuente sin procesar y que existe una mayor disponibilidad de los nutrientes asimilables en el lodo como consecuencia del proceso de fermentación anaeróbica a que es sometido el material. También De la Peña y col (1982) plantean que es rico en sustancias húmicas lo cual es vital para el mejoramiento de las propiedades físicas del suelo.

Teniendo en cuenta lo anteriormente expuesto y conociendo que los digestores del MININT en Camagüey producen un gran volumen semanal de este residuo, y que por demás las áreas del cultivo del plátano tanto en la Agropecuaria MININT, como en el municipio y la provincia, tienen bajos niveles de nutrientes por la falta de fertilizantes químicos, fue que se llevo a cabo este trabajo en el cual se estudiaron las dosis del residual en su estado sólido, con vista a mejorar los rendimientos en este importante cultivo de la canasta básica.

MATERIALES Y MÉTODOS

Para la realización de la caracterización se tomaron muestras del residual sólido de biogás durante siete meses, una cada mes, de los digestores del MININT ubicados en el camino de Maraguán, del municipio de Camagüey, a los que se le realizaron los siguientes análisis:

Químicos: pH (H₂O); CE; MO; % N; % P; % K; % Ca y % Mg.

Microbiológico: Conteo de bacterias, hongos y actinomiceto.

Las mediciones realizadas al cultivo fueron: Rendimiento, número de manos por racimo y número de dedos de la segunda mano.

En los resultados químicos, los rangos para las medidas, se expresaron a través de intervalos de confianzas, en el caso de los microbiológicos los resultados se obtuvieron de las medias de los muestreos realizados.

Las investigaciones de campo se condujeron en la Granja del MININT Pilón 3, ubicada en el municipio Sierra de Cubitas, en el cultivo del plátano fruta (*Musa* sp), sobre un suelo clasificado como Ferrítico Rojo Oscuro típico (Instituto de Suelo, 1999);

pH (KCl)	mg.	M.O	
	P2O5	K2O	(%)
6.2	21.83	55.00	2.08

Tabla1: Composición inicial del suelo.

Los resultados de la caracterización del residual sólido se discuten al inicio del acápite de resultados y discusión.

Las dosis del residual sólido fueron: 0; 4; 8 y 12 t.ha⁻¹ equivalente a 0; 1; 2 y 3 kg.planta⁻¹, mediante un diseño de bloque al azar y cuatro réplicas. Las parcelas están compuestas por 2 hileras de 6 plantas cada una, 12 planta en total con un área de 12 m²

Al finalizar el único ciclo estudiado se hizo un muestreo de suelos por parcela donde se determinó: pH (KCl), P_2O_5 , K_2O y M.O por los métodos correspondientes.

La evaluación estadística de todos los resultados se hizo mediante análisis de varianza de clasificación doble y donde hubo significación se utilizó la prueba de rangos múltiples de Duncan para un nivel de significación del 5 %.

Para el análisis económico se utilizó el valor de 119.35 \$.t⁻¹ como precio para el plátano fruta (CEP, 1985) y 0.0657 \$.kg⁻¹ para el precio del residual de biogás, también se consideró el costo de aplicación del abono el cual fue de 182.00 \$.ha⁻¹.

RESULTADOS Y DISCUSIÓN

Los resultados de la caracterización química del residual sólido (Tabla 2) muestran que los valores de pH son altos, en el rango de 8.6 a 9.3, comparados con los obtenidos en otros abonos orgánicos tales como el compost (7.39) (Vento, 2000) y los obtenidos por varios autores en el humus de lombriz 8.16 (Font y Francisco, 1995); 7.1 a 8.2 (Delgado, 1990); 6.8 a 8.0 (Cuevas y col., 1993) y 7.6 (Garcés, 1993), esto pudiera estar dado a que es un proceso anaeróbico, donde el pH se eleva porque ocurren reacciones de reducción y se forman ácidos butíricos, acético y propiónicos. De la misma manera los valores de Conductividad eléctrica (CE) son altos (4.01 a 4.97), por encima de lo reportado para otros abonos orgánicos como el humus de lombriz con valores medios de 3.2 mmol.cm⁻¹ (Escusell y Saña, 1988). Este comportamiento de la CE pudiera deberse a la influencia de los materiales con los que se alimentaron estos digestores en el período de estudio que constaron de residuales líquidos de cochiqueras y estiércol vacuno en menor proporción.

En el caso del % de N (1.92 a 2.36); P (0.91 a 1.25) y K (1.7 a 2.24), sus valores son altos si lo comparamos con los por cientos de estos mismos nutrientes en abonos orgánicos registrados por autores como Font y Francisco (1995) en el caso del humus de lombriz, reportan 2.02 % de N, 1.03 de P y 0.4 de K y Caballero (1999) que para el estiércol vacuno refiere 1.76 % de N, 0.75 de P y

1.2 de K y Vento (2000) para el compost obtiene 1.79~% de N, 0.38 de P y 1.39 de K.

No.	pН	CE	% N	% P	% K	% Ca ²⁺	% Mg ²⁺	% H ₂ O	% MO
	(H_2O)								
1	8.6	3.40	1.68	0.92	1.86	7.00	1.54	47.70	48.00
2	9.0	5.10	2.04	0.83	2.50	10.80	1.49	31.71	54.00
3	8.4	5.83	1.90	1.04	2.16	10.20	1.54	23.77	48.00
4	9.3	4.52	2.33	1.60	2.50	8.48	2.26	41.72	32.50
5	9.0	4.09	2.75	1.30	1.86	8.76	2.64	41.62	44.00
6	8.5	4.21	2.26	0.90	1.50	8.32	2.66	31.86	46.00
7	8.8	4.30	2.00	0.99	1.50	6.96	2.28	48.03	45.41
	8.8±0.2	4.49±0.48	2.14±0.22	1.08±0.17	1.98±0.26	8.65±0.91	2.06±0.33	38.06±5.68	45.42±4.06
Esx	0.3215	0.7779	0.3467	0.2735	0.4209	1.4579	0.5245	9.1412	6.5346

Tabla2: Caracterización química del residual sólido de biogás.

Los contenidos de Ca²⁺ (7.74 a 9.56 %) y Mg²⁺ (1.73 a 2.39 %) están dentro de los rangos permisibles para que este material sea utilizado como abono y al compararlo con el humus de lombriz con contenidos de Ca²⁺ de 4.71 % y 1.36 % de Mg²⁺ (Font y Francisco, 1995) y con el compost el cual presenta contenidos de 1.58 % de Ca²⁺ y 0.89 % de Mg²⁺ (Vento, 2000) se nota que el residual sólido de biogás es un poco más rico en estos elementos.

Además, el material presenta un buen contenido de materia orgánica (41.46 a 49.48 %) lo que lo hace muy atractivo para aplicarlo a los cultivos como abono. En cuanto a la caracterización microbiológica (Tabla3), podemos destacar la alta carga bacteriana que presenta el material en el orden de 108 ufc.g-1 ó ml de residual sólido, superando lo reportado en humus de lombriz por Delgado (1990) y Lacasa (1990) en ordenes inferiores; en correspondencia con Simón y col (1993) y Font y Francisco (1995) para este mismo abono y por debajo de lo encontrado en compost obtenido de residuos de restos vegetales y estiércol vacuno por (Vento, 2000).

Tabla3: Caracterización microbiológica del residual de biogás

Bacterias	X	108	Hongos	X	104	Actinomicetos	X	106
ufc			ufc			ufc		
Resid. sólio	do		Resid. so	ólid	O	Resid. sólido		
17.7			5.0			3.87		

Las poblaciones de hongos en el orden de 10⁴ son similares a las encontradas en humus de lombriz por Font y Francisco (1995); aunque inferiores a lo reportado para este mismo abono orgánico por otros autores (Velazco y Fernández, 1989; Delgado, 1990; Simón y col, 1993).

Para el grupo microbiano de los actinomicetos los valores encontrados coinciden con los reportados en humus de lombriz por Compagnoni y Putzolu (1985), Delgado (1990) y Font y Francisco (1995) en el orden de los millones de

unidades formadoras de colonias siendo un poco más representativas en el residual sólido de biogás, pero inferiores a lo reportado por Vento (2000) en compost.

En el Tabla 4 se presenta el efecto causado por el residual de biogás sólido sobre el rendimiento, el número de mano y el número de dedos de la segunda mano; donde se observa que con la dosis de 3 kg.planta-1 del residual de biogás se obtienen los mayores incrementos en los rendimientos del plátano fruta; lo cual se debe al efecto favorable que este abono causa sobre las propiedades físicas, químicas y biológicas del suelo, como bien reportan los autores Arcia y col (1986) y De la Peña y Díaz (1982), por otro lado se aprecia que el número de mano por racimo y de dedos de la segunda mano, no sufrieron variaciones significativas, solamente una tendencia al aumento en el número de manos y de dedos de la segunda mano, con el incremento de las dosis. Resultados similares reportan Olazábal y Reyes (1991), estudiando el humus de lombriz en plátano fruta sobre el mismo suelo y Caballero y col (2001, 2003 y 2004) empleando el residual de biogás en otros cultivos y suelos.

Tabla 4. Influencia de las dosis del residuo de biogás sólido sobre el rendimiento y sus principales componentes.

Tratamientos	Rend.	No. de manos	No. de dedos de
biogás sólido	(t ha ⁻¹)	por racimo.	la 2da mano.
(kg planta ⁻¹)			
0	39.51 ^c	8	12
1	47.49 bc	9	14
2	52.92 ab	9	14
3	56.77 a	9	14
ES x	0.8955 *	0.4606 ^{ns}	0.6955 ^{ns}

El estado final del suelo al finalizar el ciclo se expone en la Tabla 5; donde se aprecia que el pH no sufrió variaciones significativas, sin embargo los contenidos de fósforo, potasio y la materia orgánica en todos los tratamientos donde se aplicó el abono aumentaron significativamente con respecto al testigo. La aplicación del abono propició la liberación del fósforo que pudiera estar retenido en el suelo, respuesta corrobora lo expresado por otros autores sobre el efecto positivo que este abono causa fundamentalmente en las propiedades químicas, todo esto justifica lo obtenido en los rendimientos por el efecto favorable que causo el abono, lo cual ha sido reportado por otros autores como Bacht y col (1997), Guevara y col (2004) y Chaveli (2006), utilizando el residuo de biogás en otros cultivos y suelos.

Tabla 5. Influencia del residual de biogás sólido sobre las principales propiedades químicas del suelo.

Tratamientos	рН	mg.100g-1 de	M.O	
(kg planta ⁻¹)	(KCl)	P_2O_5	K ₂ O	(%)
0	6.7	21.18 ^b	48.80 ^b	2.35 ^b
1	6.6	34.73 ^a	61.50 ^{ab}	3.38 ^a
2	6.1	35.33ª	61.54 ^{ab}	3.35 ^a
3	6.4	37.46 ^a	67.76 ^a	3.56 ^a
Esx	0.133 ^{ns}	3.124*	3.124*	0.171*

En el análisis económico de los resultados (Tabla 6), se muestra el beneficio económico obtenido al comparar el mayor rendimiento obtenido contra el testigo, además el valor de la producción para una hectárea, menos el costo total de la aplicación del abono para una hectárea y por último el valor de la producción final de ambos tratamientos, lográndose un beneficio económico de 1 877.78 \$.ha⁻¹, fundamentalmente por el incremento que se logra en la producción.

Tabla 6. Beneficio económico obtenido por la aplicación del residual.

Tratamientos	Rend. (kg.m ⁻²)	Valor de prod.	Costo total	Valor de prod final	Beneficio (\$.ha ⁻¹)
Tratamicitos	(Kg.III -)	(\$.ha ⁻¹)	(\$.ha ⁻¹)	(\$.ha ⁻¹)	(φ.11α -)
Testigo no aplicación	39.51	4 715.52	-	4 715.52	-
Aplicación 3 kg.planta ⁻¹ residuo biogás	56.77	6 775.50	182.20	6 593.3	1 877.78

CONCLUSIONES

- El residual de biogás sólido de acuerdo a su caracterización química y microbiológica es un excelente abono para la utilización en los cultivos.
- La dosis de 3 kg. planta⁻¹ del residual de biogás eleva los rendimientos en el cultivo del plátano fruta, con un beneficio económico para los productores de 1 877.78 \$.ha⁻¹.
- Los contenidos de P₂O₅, K₂O y el % de M.O, se vieron favorecidos con el abono confirmando su incidencia positiva sobre el suelo.
- En plantaciones de plátano fruta sembradas sobre suelos Ferríticos Rojo Oscuros típicos, se deben aplicar 3 kg.planta⁻¹ del residual de biogás para obtener rendimientos sobre las 56 kg.ha⁻¹ de plátano fruta y obtener un beneficio económico de 1 877.78 \$.ha⁻¹, para los productores.

BIBLIOGRAFIA.

Arcia, F.J.; Nuñez, A.G.; Amorós, Y. y Mustelier, L.A. (1986). Uso agrícola del lodo de la producción de biogás a partir de la cachaza. Cuba Azúcar, p3.

- Bacht, T.; Monadero, M.; Ubaya, C. y Valdes, E. (1997). Utilización de lodos anaeróbicos de la producción de biogás como enmiendas orgánicas del suelo. IV Congreso de Sociedad Cubana de la Ciencia del Suelo y Reunión Internacional de Rhizosfera. p: 97.
- Caballero, R.; Gandarilla, J.E.; Pérez, D. y Rodríguez, D. (1999). Uso del lodo residual de la producción de biogás en la fertilización de las hortalizas en huertos intensivos. Centro Agrícola. 4:35-38.
- Caballero R. J. Gandarilla; Denia. Pérez y Deisi Rodríguez. (2001). Tecnología de fertilización orgánica para elevar los rendimientos y mantener la fertilidad de los suelos en los huertos intensivos. XV Congreso Latinoamericano y V Cubano de la Ciencia del Suelo. Programas y resúmenes. ISCN 1609-1876. No.4 11 al 16 de nov.: 18.
- Caballero, R.; Denia Pérez.; Mirna Vento. (2003). Generalización de la tecnología de fertilización orgánica en los huertos intensivos del Municipio Camagüey. Informe final del proyecto Territorial. 0908007. Instituto de Suelos, Dirección provincial, Camagüey. 25 p.
- Caballero, R.; González, M; Pérez, P; Chaveli, P; Rodríguez, D. (2004). Mejoramiento de la disponibilidad de abonos orgánicos en la Granja Urbana del municipio Camagüey. XIV Congreso Científico INCA. Programas y Resúmenes. p 78.
- CEP. (1985). Comité Estatal de precios.
- Compagnoni, L. y Putzolu, J. (1985). Cría moderna de lombrices y utilización rentable del humus. Barcelona. España. Ed. De Vecchi. 124 p.
- Cuevas, J.R.; De la Cruz, R.; y Morejón, J.O. (1993). Dinámica de población anual de un cultivo de *Eisenia foetida andrei*. III Congreso Cubano de las Ciencias del Suelo y III Seminario Científico de la Estación Experimental "La Renee". Resúmenes.
- Chaveli, P; Caballero R.; Corrales I; López P. y D. Rodríguez. (2006). Empleo del residual de biogás en la fertilización de algunos cultivos. Informe final de Proyecto Territorial 0908017. Instituto de Suelos. Dirección Provincial. Camaguey. 12-16 p.
- Da Silva, E.J. (1979). Biogás generation. Developments, problems and task-an overview. Bulletin supplement-2. the United Nations University. 84-98.
- De la Peña, D. y Díaz J. (1982). Efecto del bioabono en la agregación y el contenido de agua en el suelo. Universidad Nacional Técnica de Cajamarca, Perú. 8 p.
- Delgado, A. (1990). Humus de lombriz. Caracterización y valor fertilizante. Humusa CIDA. 38-51.
- Escusell, M. y Saña, V. (1988). Caracterización de la calidad de los vermicompost. Riego y Drenaje. 32:61-70.

- FAO, (1981). China: Propagación de la Azolla y tecnología de biogás a pequeña escala. Boletín de suelos 41:21-36.
- Font, L. y Francisco, A.M. (1995). El humus de lombriz: caracterización, almacenamiento y uso como abono orgánico. Tesis en opción al título de Ingeniero Agrónomo. ISACA. 55 p.
- Fontes, A. y Gandarilla, J.E. (1999). Intensificación de la generación de biogás a partir de la cachaza. Il Taller Caribeño de Energía y Medio Ambiente. Cienfuegos, Cuba. p. 34-38.
- Garcés, N. y Ruiz, E. (1993). Estudio de algunas características de un tipo de humus de lombriz obtenido en Cuba. III Congreso Cubano de las Ciencias del Suelo y III Seminario Científico de la Estación Experimental "La Renee". Resúmenes.
- Guevara, A.; González, M.; Pérez, D.; Peña, E; Hartman, T. y Bardanca, T. (2004). Aplicaciones de abonos orgánicos y fertilizantes minerales para hortalizas en casas de cultivos protegidos. XIV Congreso Científico del INCA. Programa y Resúmenes. p 27.
- Instituto de Suelos. (1999). Nueva versión de la clasificación genética de los suelos de Cuba. MINAGRI. La Habana: 64 p.
- Lacassa, M.A. (1990). Fertilización de origen biológico. La Habana. Ed. CIDA 41 p.
- Olazábal, J.M; R. Reyes. (1991). Dosis de humus de lombriz en suelo Ferrítico típico dedicado al cultivo del plátano fruta en condiciones de riego por micro aspersión. 12-16 p.
- Simón, I.; Báez, I.; Font, L.; Francisco, A.; Mundereia, O. y Gandarilla, J.E. (1993). Caracterización química y microbiológica del humus de lombriz procedente de diferentes sustratos. III Congreso Cubano de las Ciencias del Suelo y III Seminario Científico de la Estación Experimental "La Renee". Resúmenes.
- Velazco, A. y Fernández, F. (1989). Caracterización microbiológica del desecho de la lombriz de tierra. Cultivos Tropicales. 11(1):95-97.
- Vento, M. (2000). Obtención de un compost estático y estudio de su calidad. Tesis en opción al grado de Master en Ciencias. Universidad de Camagüey. 47 p.