Africanization of Melliferous Bees (Apis mellifera.L.) Bibliographic Review

Main Article Content

Diego Masaquiza Moposita
Lino Miguel Curbelo Rodríguez
Amilcar Arenal Cruz


Context: The hybridization process (Africanization) of European bees with African bees is a problem for apiculture farmers in the Americas, due to high swarming levels and defensiveness. The latter hinders colony handling, and has caused accidents to people and animals, increasing the risks of beekeeping. In this sense, there is a need for genetic breeding of melliferous bees, and previous identification of subspecies.

Aim: To evaluate the origin of melliferous bees (Apis mellifera), and the process of Africanization and dispersion of Africanized bees throughout the Americas, as well as methods of identification.

Methods: The databases of Sciencedirect, Google-Scholar, Scopus, and NCBI were reviewed under the following key words, Apis mellifera, Apis, Africanized bees, geometric morphometrics, mitochondrial DNA. Special emphasis was paid to papers published within the last five years.

Results: The origin and distribution of melliferous bees, and the Africanization and dispersion processes of Africanized bees were described. Additionally, the evolution of methods for the characterization of Apis mellifera species were updated.

Conclusions: Africanization can be considered the most important process in the transformation of conduct and morphological features of melliferous bees, which allowed for their rapid dispersion in the Americas. The identification methods based on parents are essential to know possible process of genetic erosion, and to present strategies for bee conservation and breeding in every region.

Article Details

Cómo citar
Masaquiza Moposita, D., Curbelo Rodríguez, L., & Arenal Cruz, A. (2020). Africanization of Melliferous Bees (Apis mellifera.L.) Bibliographic Review. Agrisost, 26(2), 1-12. Recuperado a partir de
Artículo de revisión


Abizanda, C. (2018). Caracterización morfométrica y molecular de las abejas melíferas en la provincia de Huesca. (Trabajo Fin de Máster), Universidad de Zaragoza, Escuelo Politécnica Superior, España. Retrieved on March 12, 2019, from:
Achou, M., Loucif-Ayad, W., Legout, H., Hmidan, H., Alburaki, M., & Garnery, L. (2015). An insightful molecular analysis reveals foreign honey bees among Algerian honey bee populations (Apis mellifera L.). Data Mining Genomics Proteomics, 6(1), 166, doi:
Adams, D.C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5-16, doi:
Alattal, Y., Alsharhi, M., Alghamdi, A., Alfaify, S., Migdadi, H., & Ansari, M. (2014). Characterization of the native honey bee subspecies in Saudi Arabia using the medina COI-COII intergenic region and morphometric characteristics. Bulletin of Insectology, 67(31-37). Retrieved on April 5, 2019, from:
Alpatov, W. (1929). Biometrical studies on variation and races of the honey bee (Apis mellifera L.). The Quarterly Review of Biology, 4(1), 1-58, doi:
Amakpe, F., De Smet, L., Brunain, M., Frans, J., Sinsin, B., & de Graaf, D. (2018). Characterization of native honey bee subspecies in Republic of Benin using morphometric and genetic tools. J. Apic. Sci., 62(1), 47-59, doi:
Branchiccela, B., Aguirre, C., Parra, G., Estay, P., Zunino, P., & Antúnez, K. (2014). Genetic changes in Apis mellifera after 40 years of Africanization. Apidologie, 45(6), 752-756, doi:
Büchler, R., Costa, C., Hatjina, F., Andonov, S., Meixner, M. D., Le Conte, Y., . . . Wilde, J. (2014). The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. Journal of Apicultural Research, 53(2), 205-214, doi:
Byatt, M. A., Chapman, N. C., Latty, T., & Oldroyd, B. P. (2016). The genetic consequences of the anthropogenic movement of social bees. Insectes Sociaux, 63(1), 15-24, doi:
Bykova, T. O., Triseleva, T. A., Ivashov, A. V., & Safonkin, A. F. (2016). Morphogenetic Diversity of the Honeybee Apis mellifera L. from the Mountain-Forest Zone of Crimea. Biology Bulletin, 43(6), 541-546, doi:
Canal, N. A., Hernández-Ortiz, V., Salas, J. O., & Selivon, D. (2015). Morphometric study of third-instar larvae from five morphotypes of the Anastrepha fraterculus cryptic species complex (Diptera, Tephritidae). ZooKeys, (540), 41-59, doi:
Carpana, E. (2004). IL Genere Apis: Evoluzione e Biogeografia. Parte 1. En L'aperegina: allevamento e selezione. (pp. 23-89). Italia: Istituto Nazionale di Apicoltura Bologna
Carvajal, T. M., Hernandez, L. F., Ho, H. T., Cuenca, M. G., Orantia, B. M., Estrada, C. R., . . . Watanabe, K. (2015). Spatial analysis of wing geometry in dengue vector mosquito, Aedesaegypti (L.) (Diptera: Culicidae), populations in Metropolitan Manila, Philippines. J. Vector Borne Dis, 53, 127-135.
Chapman, N. C., Harpur, B. A., Lim, J., Rinderer, T. E., Allsopp, M. H., Zayed, A., & Oldroyd, B. P. (2015). A SNP test to identify Africanized honeybees via proportion of ‘African’ ancestry. Molecular Ecology Resources, 15(6), 1346-1355, doi:
Charistos, L., Hatjina, F., Bouga, M., Mladenovic, M., & Maistros, A. D. (2014). Morphological discrimination of Greek honey bee populations based on geometric Morphometrics analysis of wing shape. Journal of Apicultural Science, 58(1), 75-84, doi:
Chávez-Galarza, J., Garnery, L., Henriques, D., Neves, C. J., Loucif-Ayad, W., Jonhston, J. S., & Pinto, A. (2017). Mitochondrial DNA variation of Apis mellifera iberiensis: further insights from a large-scale study using sequence data of the tRNAleu-cox2 intergenic region. Apidologie, 48(4), 533-544, doi: 1
Chávez-Galarza, J., Henriques, D., Johnston, J. S., Carneiro, M., Rufino, J., Patton, J. C., & Pinto, M. A. (2015, Jun). Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Mol Ecol., 24(12), 2973-92, doi:
Combey, R., Quandahor, P., & Mensah, B. A. (2018). Geometric Morphometrics Captures Possible Segregation Occurring within Subspecies Apis Mellifera Adansonii in Three Agro Ecological Zones. Annals of Biological Research, 9(3), 31-43. Retrieved on February 23, 2019, from:
Coroian, C. O., Muñoz, I., Schlüns, E. A., Paniti‐Teleky, O. R., Erler, S., Furdui, E. M., …, Moritz, R. F. A. (2014). Climate rather than geography separates two European honeybee subspecies. Molecular Ecology, 23(9), 2353-2361. doi:
Crozier, R., & Crozier, Y. (1993). The mitocondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics, 133, 97-117. Retrieved on March 15, 2019, from:
Da Silva, F., Grassi, M., Sella, M., Francoy, T. M., & Reali, A. H. (2015). Evaluating classification and feature selection techniques for honeybee subspecies identification using wing images. Computers and Electronics in Agriculture, 114, 68-77, doi:
Daly, H., Hoelmer, K., Norman, P., & Allen, T. (1982). Computer-Assisted Measurement and Identification of Honey Bees (Hymenoptera: Apidae). Annals of the Entomological Society of America, 75(6), 591-594, doi:
Darger, K. (2013). Determining low levels of Africanization in unmanaged honey bee colonies using three diagnostic techniques. (Master of Science in Entomology), University of Delaware, Estados Unidos.
De Souza, D. A., Wang, Y., Kaftanoglu, O., De Jong, D., Amdam, G. V., Gonçalves, L. S., & Francoy, T. M. (2015). Morphometric identification of queens, workers and intermediates in in vitro reared honey bees (Apis mellifera). PLoS ONE, 10(4), e0123663, doi:
Dupraw, E. (1965). Non-Linnean taxonomy and the systematics of honeybees. Systematic Zoology, 14(1), 1-24, doi:
Eimanifar, A., Kimball, R., Braun, E. L., & Ellis, J. D. (2018). Mitochondrial genome diversity and population structure of two western honey bee subspecies in the Republic of South Africa. Scientific reports, 8(1), 1333, doi:
Eimanifar, A., T. Kimball, R., L. Braun, E., & Ellis, J. D. (2016). The complete mitochondrial genome of the hybrid honey bee, Apis mellifera capensis × Apis mellifera scutellata, from South Africa. Mitochondrial DNA Part B, 1(1), 856-857, doi:
Francoy, T. M., Wittmann, D., Drauschke, M., Müller, S., Steinhage, V., Bezerra-Laure, M. A. F., . . . Gonçalves, L. (2008). Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie, 39(5), 488-494, doi:
Francoy, T., de Faria Franco, F., & Roubik, D. (2012). Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie, 43(6), 609-617, doi:
Garcia, R., Oliveira, N. T. de, Camargo, S. C., Pires, B., Oliveira, C. de, Teixeira, R., & Pickler, M. (2013). Honey and propolis production, hygiene and defense behaviors of two generations of Africanized honey bees. Scientia Agricola, 70(2), 74-81,
Garnery, L., Solignac, M., Celebrano, G., & Cornuet, J. (1993). A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia, 49(11), 1016-1021. doi:
Genchi, M. L., Reynaldi, F. J., & Bravi, C. M. (2018). An update of Africanization in honey bee (Apis mellifera) populations in Buenos Aires, Argentina. Journal of Apicultural Research, 57(5), 611-614.
Goetze, G. (1940). Die beste Biene: Züchtungs- und Rassen-Kunde der Honbigbiene nach dem heutigen Stand von Wissenschaft und Praxis. Germany: Leipzig: Liedloff: Loth und Michaelis.
Graciano, L. A. (2018). Niveles de infestación de Varroa destructor (Mesostigmata: Varroidae) en abejas africanizadas (Apis melliferas cutellata). (Tesis Magister en Ciencias: Entomología), Universidad Nacional de Colombia-Medellín, Colombia. Retrieved on March 12, 2019, from:
Haddad, N., Adjlane, N., Loucif-Ayad, W., Dash, A., Naganeeswaran, S., Rajashekar, B., ... Sicheritz-Pontén, T. (2017). Mitochondrial genome of the North African Sahara Honeybee, Apis mellifera sahariensis (Hymenoptera: Apidae). Mitochondrial DNA Part B, 2(2), 548-549, doi:
Hall, M. J. R., MacLeod, N., & Wardhana, A. H. (2014). Use of wing morphometrics to identify populations of the Old World screwworm fly, Chrysomya bezziana (Diptera: Calliphoridae): A preliminary study of the utility of museum specimens. Acta Tropica, 138, S49-S55. doi:
Hamiduzzaman, M., Guzmán-Novoa, E., Goodwin, P. H., Reyes-Quintana, M., Koleoglu, G., Correa-Benítez, A., & Petukhova, T. (2015). Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism. Journal of invertebrate pathology, 126, 12-20. doi:
Harpur, B. A., Kent, C.F., Molodtsova, D., Lebon, J. M. D., Alqarni, A.S., Owayss, A. A., & Zayed, A. (2014). Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proceedings of the National Academy of Sciences, USA, 111, 2614-2619, doi:
Henriques, D., Parejo, M., Vignal, A., Wragg, D., Wallberg, A., Webster, M. T., & Pinto, M. A. (2018). Developing reduced SNP assays from whole-genome sequence data to estimate introgression in an organism with complex genetic patterns, the Iberian honeybee (Apis mellifera iberiensis). Evolutionary applications, 11(8), 1270-1282, doi:
Hidalgo, M., & Mena, S. (2003). Proyecto de viabilidad de implementación de una granja apícola en la parroquia de Nanegalito. (Tesis de Ingeniería en Ciencias Administrativas Tesis de Ingeniería, inédita), Pontificia Universidad Católica del Ecuador, Quito.
Howell V., Daly, & Balling, S. (1978). Identification of Africanized Honeybees in the Western Hemisphere by Discriminant Analysis. Journal of the Kansas Entomological Society, 51(4): 857-869.
Ivanova, E., Bouga, M., Staykova, T., Mladenovic, M., Rasic, S., Charistos, L.,. . . Petrov, P. (2012). The genetic variability of honey bees from the Southern Balkan Peninsula, based on alloenzymic data. Journal of Apicultural Research, 51(4), 329-335, doi:
Jarnevich, C. S., Esaias, W. E., Ma, P. L. A., Morisette, J. T., Nickeson, J. E., Stohlgren, T. J., . . . Tan, B. (2014). Regional distribution models with lack of proximate predictors: A fricanized honeybees expanding north. Diversity and Distributions, 20(2), 193-201, doi:
Kandemir, İ., Özkan, A., & Fuchs, S. (2011). Reevaluation of honeybee (Apis mellifera) microtaxonomy: a geometric morphometric approach. Apidologie, 42(5), 618, doi:
Kelomey, A., Paraïso, A. A., Sina, H., Legout, H., Adjanohoun, A., Garnery, L., & Baba-Moussa, L. (2017). Genetic Variability of the Mitochondrial DNA in Honeybees (Apis mellifera L.) from Benin. Journal of Agricultural Science and Technology, 7, 557-566, doi:
Kerr, W. E. (1967). The history of the introduction of African bees in Brazil. South African Bee J., 39: 33-35.
Kono, Y., & Kohn, J. (2015). Range and frequency of africanized honey bees in California (USA). PLoS ONE, 10(9), e0137407, doi:
Magnus, R., & Szalanski, A. L. (2010). Genetic evidence for honey bees (Apis mellifera L.) of Middle Eastern lineage in the United States. Sociobiology, 55(1B), 285-296. Retrieved on March 15, 2019, from:
Medina-Flores, C. A., Guzmán-Novoa, E., Hamiduzzaman, M. M., Aguilera Soto, J., Carlos, L., & Marco, A. (2015). Africanización de colonias de abejas melíferas (Apis mellifera) en tres regiones climáticas del norte de México. Veterinaria México OA, 2(4), 1-9. Retrieved on March 2, 2019, from:
Meixner, M. D., Pinto, M. A., Bouga, M., Kryger, P., Ivanova, E., & Fuchs, S. (2013). Standard methods for characterising subspecies and ecotypes of Apis mellifera. Journal of Apicultural Research, 52(4), 1-28, doi:
Mendoza, Y., Antúnez, K., Branchiccela, B., Anido, M., Santos, E., & Invernizzi, C. (2014). Nosemaceranae and RNA viruses in European and Africanized honeybee colonies (Apis mellifera) in Uruguay. Apidologie, 45(2), 224-234, doi:
Miguel, I., Garnery, L., Iriondo, M., Baylac, M., Manzano, C., Steve, W., & Estonba, A. (2016). Origin, evolution and conservation of the honey bees from La Palma Island (Canary Islands): molecular and morphological data. Journal of Apicultural Research, 54(5), 427-440, doi:
Moore, P., Wilson, M., & Skinner, J. (2015). Africanized Bees: Better Understanding, Better Prepared. USA: University of Tennessee, Department of Entomology and Plant Pathology, the, Knoxville TN. Retrieved on February 16, 2019, from:
Mortensen, A., & Ellis, J. (2015). The frequency of African (Apis mellifera scutellata Lepeletier) matrilineal usurpation of managed European-derived honey bee (A. mellifera L.) colonies in the southeastern United States. Insectes Sociaux, 62(2), 151-155. doi:
Muñoz, I., Enriques, D., Jara, L., Johnston, J.S., Chávez-Galarza, J., Rua, P. de la, & Pinto, M. (2016). SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera). Mol. Ecol. Res, 17(4), 783-795, doi:
Muñoz, I., Henriques, D., Johnston, S., Chávez-Galarza, J., Kryger, P., & Pinto, M. A. (2015). Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis mellifera mellifera). PLoS ONE, 10(4), e0124365, doi:
Muñoz, I., Lodesani, M., Rúa, P. de la, & Dall'Olio, R. (2014). Estimating introgression in Apis mellifera siciliana populations: are the conservation islands really effective? Insect Conserv Divers, 7(6), 563-571, doi:
Nogueira-Neto, P. (1972). Notas sobre a história da apicultura brasileira. En J. M. F. De Camargo (ed.), Manual de Apicultura. (pp. 17-32). Sao Paulo, Brasil: Editora Agronomia Ceres.
Nunamaker, R. A., & Wilson, W. T. (1982). Isozyme changes in the honeybee, Apis mellifera L., during larval morphogenesis. Insect Biochemistry, 12(1), 99-104, doi:
Nunes, L. A., Araújo, E. D. de, Marchini, L. C., & Moreti, A. C. de C. C. (2012). Variation morphogeometrics of Africanized honey bees (Apis mellifera) in Brazil. Iheringia. Série Zoologia, 102(3), 321-326, doi:
Oleksa, A., & Tofilski, A. (2015). Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie, 46(1), 49-60, doi:
Ostroverkhova, N. V., Konusova, O. L., Kucher, A. N., Kireeva, T. N., Vorotov, A. A., & Belikh, E. A. (2015). Genetic diversity of the locus COI-COII of mitochondrial DNA in honeybee populations (Apis mellifera L.) from the Tomsk region. Russian Journal of Genetics, 51(1), 80-90, doi:
Oyerinde, A., Salako, E., & Rabiu, M. (2017). Morphometric taxonomy of honeybee races of Apis mellifera L. in Kaduna state. Journal of Entomology and Zoology Studies, 5(5), 825-829. Retrieved on March 23, 2019, from:
Péntek-Zakar, E., Oleksa, A., Borowik, T., & Kusza, S. (2015). Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies Ecology and Evolution, 5(23), 5456-5467, doi:
Pinto, M. A., Henriques, D., Chavez-Galarza, J., Kryger, P., Garnery, L., van der Zee, R.,… Johnston, J. S. (2014). Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and medina sequence data. Journal of Apicultural Research, 53(2), 269-278, doi:
Portman, Z. M., Tepedino, V. J., Tripodi, A. D., Szalanski, A. L., & Durham, S. L. (2018). Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biological invasions, 20(3), 593-606, doi:
Qubaiová, J., Růžička, J., & Šípková, H. (2015). Taxonomic revision of genus Ablattaria Reitter (Coleoptera, Silphidae) using geometric morphometrics. ZooKeys, (477), 79-142, doi:
Rangel, J., Giresi, M., Pinto, M. A., Baum, K. A., Rubink, W. L., Coulson, R. N., & Johnston, J. S. (2016). Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference? Ecology and Evolution, 6(7), 2158-2169, doi:
Rohlf, F. J., & Marcus, L. F. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129-132. doi:
Rortais, A., Arnold, G., Alburaki, M., Legout, H., & Garnery, L. (2011). Review of the DraI COI-COII test for the conservation of the black honeybee (Apis mellifera mellifera). Conserv Genet Resour, 3(2), 383-391, doi:
Rúa, P. de la, Jaffé, R., Dall'Olio, R., Muñoz, I., & Serrano, J. (2009). Biodiversity, conservation and current threats to European honeybees. Apidologie, 40(3), 263-284, doi:
Rúa, P. de la, Martínez, J., Domingo, O., & Gabaldón, I. (2013). Caracterización molecular de la biodiversidad de la cabaña apícola de la provincia de Albacete. Revista de Estudios Albacetenses, (9), 175-196. Retrieved on April 6, 2019, from:
Ruttner, F. (1988). Biogeography and Taxonomy of Honeybees. Springer, Berlin, doi:
Ruttner, F. (1992). Natural history of honey bees. Munich, Germany: Ehrenwirth Verlag.
Ruttner, F., Tassencourt, L., & Louveaux, J. (1978). Biometrical-statistical analysis of the geographic variability of Apis mellifera L. Material and methods. Apidologie, 9(4), 363-381, doi:
Sanford, M. (2006). Africanized honey bee: A biological revolution with human cultural implications. American Bee Journal. Retrieved on February 5, 2019, from:
Santana, F. S., Costa, A. H., Truzzi, F. S., Silva, F. L., Santos, S. L., Francoy, T. M., & Saraiva, A. M. (2014). A reference process for automating bee species identification based on wing images and digital image processing. Ecological Informatics, 24, 248–260, doi:
Sousa, A. R. S., Araújo, E. D., Gramacho, K. P., & Nunes, L. A. (2016). Bee’s morphometrics and behavior in response to seasonal effects from ecoregions. Genetics and Molecular Research, 15(2), 1-14, doi:
Strauss, U., Dietemann, V., Human, H., Crewe, R. M., & Pirk, C. W. (2015). Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor. Parasitology, 143(3), 374-387, doi:
Su, X., Cai, X., & Huang, D. (2018). Taxonomic Ecology of Geometric Morphometry on Classification and Identification of Sphingid Moths (Lepidoptera: Sphingidae). Ekoloji, 27(106), 827-835. Retrieved on March 15, 2019, from:
Sylvester, H. A., & Rinderer, T. E. (1987). Fast Africanized Bee Identification System (FABIS). American BeeJournal, 127(7), 511-516.
Szalanski, A. L., & Magnus, R. M. (2010). Mitochondrial DNA characterization of Africanized honey bee (Apis mellifera L.) populations from the USA. Journal of Apicultural Research, 49(2), 177-185, doi:
Szalanski, A., & Tripodi, A. (2014). Assessing the Utility of a PCR Diagnostics Marker for the Identification of Africanized Honey Bee, Apis mellifera L., (Hymenoptera: Apidae) in the United States. Sociobiology, 61(2), 234-236, doi:
Takahashi, J.-i., Wakamiya, T., Kiyoshi, T., Uchiyama, H., Yajima, S., Kimura, K., & Nomura, T. (2016). The complete mitochondrial genome of the Japanese honeybee, Apiscerana japonica (Insecta: Hymenoptera: Apidae). Mitochondrial DNA Part B, 1(1), 156-157, doi:
Techer, M. A., Clémencet, J., Turpin, P., Volbert, N., Reynaud, B., & Delatte, H. (2015). Genetic characterization of the honeybee (Apis mellifera) population of Rodrigues Island, based on microsatellite and mitochondrial DNA. Apidologie, 46(4), 445-454, doi:
Techer, M., Clémencet, J., Simiand, C., Preeaduth, S., Azali, H. A., Reynaud, B., & Hélène, D. (2017). Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC genetics, 18(1), 53, doi:
Tibatá, V. M., Arias, E., Corona, M., Ariza Botero, F., Figueroa-Ramírez, J., & Junca, H. (2018). Determination of the Africanized mitotypes in populations of honey bees (Apis mellifera L.) of Colombia. Journal of Apicultural Research, 57(2), 219-227, doi:
Torcida, S., & Perez, I. S. (2012). Análisis de Procrustes y el estudio de la variación morfológica. Revista Argentina de Antropología Biológica, 14(1), 131-141. Retrieved on March 15, 2019, from:
Valido, A., Rodríguez-Rodríguez, M. C., & Jordano, P. (2014). Impacto de la introducción de la abeja doméstica (Apis mellifera, Apidae) en el Parque Nacional del Teide (Tenerife, Islas Canarias). Revista Ecosistemas, 23(3), 58-66, doi:
Verde, M. M. (2014). Apicultura y seguridad alimentaria. Revista Cubana de Ciencia Agrícola, 48(1), 25-31. Retrieved on March 23, 2019, from:
Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., . . . Rúa, P. de la (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 46(10), 1081-1088, doi:
Whitfield, C., Behura, S., Berlocher, S., Clark, A., Johnston, S., Sheppard, W., . . . Tsutsui, N. (2006). Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science, 314(5799), 642-645, doi:
Winston, M. (1992). Killer bees. The Africanized honey bee in the Americas. Cambridge, Massachusetts, USA: Harvard University Press.
Wu, M.-C., Lu, T.-H., & Lu, K.-H. (2017). PCR-RFLP of mitochondrial DNA reveals two origins of Apis mellifera in Taiwan. Saudi Journal of Biological Sciences, 24(5), 1069-1074. doi:
Zelditch, M., Swiderski, D., Sheets, D., & Fink, W. L. (2004). Geometric Morphometrics for Biologists: A Primer: Academic Press.
Zhao, W., Tan, K., Zhou, D., Wang, M., Cheng, C., Yu, Z., . . . He, S. (2014). Phylogeographic analysis of Apiscerana populations on Hainan Island and southern mainland China, based on mitochondrial DNA sequences. Apidologie, 45(1), 21-33, doi: