An Update in Helminth Fauna and Other Equine Parasites in Cuba
Review article

Karel Gómez-Cabrera*; Josmel Salas-Romero*; Zaúl Gutiérrez Lastra*; José Barreto*; Mara L. Gutiérrez*; Liliana Sorís*; Amílcar Arenal**

*Department of Veterinary Medicine, Faculty of Agricultural Sciences, Ignacio Agramonte Loynaz University of Camagüey, Cuba
** Department of Morphophysiology, Faculty of Agricultural Sciences, Ignacio Agramonte Loynaz University of Camagüey
josmel.salas@reduc.edu.cu

ABSTRACT
Understanding of parasitic diseases begins by knowing the species of a population. Accordingly, information to identify the equine helminth faunas of Cuba was re-collected due to the gradual loss of data caused by deterioration of the printed scientific literature. These parasitic populations were first identified by Doctor Idelfonso Pérez Vigueras during the first half of the 21st Century. Further studies were conducted on horse populations in different provinces. Currently, 34 helminths have been properly reported, including nine benzimidazole-resistant species of cyathostomes in several herds. As a result of a large number of nematodes described in the international scientific literature, and due to the insufficient studies made in Cuba, the equine helminth faunas probably include a larger number of species. Hence, further comprehensive studies should be conducted on this topic.

Key words: equines, helminths, parasites

INTRODUCTION
Over millions of years, equidae evolved as hosts of various forms of parasitic forms, so they may be considered a normal part of the fauna that inhabits their intestines (Nielsen, 2012). However, the living conditions established and the selection practices set by man have favored higher exposure and susceptibility to diseases (Duarte et al., 2014).

Today, gastrointestinal parasitism is one of the most commonly seen disorders that affect equines worldwide (Nielsen, 2015). Some of these disorders are growth retardation, weight reduction, diarrhea, colics, reduced physical capacity for work and sports, and even death (Thamsborg et al., 1998; Stancampiano et al., 2017; Aromaa et al., 2018).

The animals which are not treated with anthelminthic drugs after feeding in contaminated areas may accumulate large quantities of parasites (Matthews, 2014). Gastrointestinal nematodes that affect equines are comprised in 7 sub-orders, 12 families, 29 genera, and 83 species, of which 63 species belong to the Strongylidae family, that includes some of the most pathogenic horse parasites (Lichtenfels et al., 2008).

In Cuba, little research has been done to identify the epidemiology of nematodes affecting equines (Salas-Romero et al., 2014a). Just four studies have dealt with morphometric identification of equine parasites in Cuba; other studies have focused on ovoscopic and larvoscopic diagnostics. The two largest classification studies (Pérez-Vigueras, 1936; and Varus and Valle, 1966) are only available in a limited number of printed copies. Therefore, information regarding equine parasites reported so far in Cuba should be compiled.

DEVELOPMENT
The first identification study of parasite fauna in horses was conducted by doctor, (Pérez-Vigueras, 1936) in Havana. It consisted in the observation of 15 species of parasites, including 14 kinds of nematodes: Strongylus equinus (Müller, 1780); Strongylus edentatus (Looss, 1900); Strongylus vulgaris (Looss, 1900); Triodontophorus tenuicollis (Boulenger, 1916); Oesophagodontus robustus (Giles, 1892); Cyathostomum tetracanthum (Mehlis, 1831) synonym used: Trichonema tetracanthum; Cyathostomum pat-
eratum (Yorke and Macfie, 1919) synonym used: Trichonema pateratum; Cylicostephanus longibursatus (Yorke and Macfie, 1918) synonym used: Trichonema longibursatum; Oxyurus equi (Schrank 1788); Parascaris equorum (Goeze 1782); Habronema muscae (Carter 1861); Habronema megastoma (Rudolph, 1819); Habronema microstoma (Schneider, 1866); Setaria equina (Abildgaard, 1789), and a cestode: Anoplocephala perfoliata (Goeze 1782).

Later, Varus and Valle (1966) continued the work done by Pérez-Vigueras (1936), based on thorough helminthological necropsies of four equines in the former province of Oriente. In that study, 26 intestinal worm species (25 nematodes and a cestode) were observed. Among them, 17 species of nematodes were reported for the first time in Cuba. Triodontophorus serratus (Looss, 1900); Triodontophorus brevicauda (Boulenger, 1916); Triodontophorus nipponicus (Yamaguti, 1943); Cylicostephanus calicatus (Looss, 1900) synonym used: Trichonema calicatum; Cyathostomum catinatum (Looss, 1900) synonym used Trichonema catinatum; Coronoclycus coronatus (Looss, 1900) synonym used Trichonema coronatum; Cylicoclycus insigne (Boulenger, 1917); Cylicoclycus nassatus (Looss, 1900); Cylicodontophorus bicoronatus (Looss, 1900) synonym used Cylicodontophorus bicornonatum; Parapoteriostomum eproctum (Boulenger, 1917) synonym used Cylidodontophorus eproctum; Coronoclycus sagittatus (Kotlán, 1920) synonym used Cylidodontophorus sagittatum; Cylicostephanus goldi (Boulenger, 1917) synonym used Schulzitrichonema goldi; Cylicostephanus hybridus (Kotlán, 1920) synonym used Schulzitrichonema hybridum; Coronoclycus labiatus (Looss, 1902) synonym used Schulzitrichonema labiatum; Coronoclycus labratus (Looss, 1900) synonym used Schulzitrichonema labratus, and Gyalectophalus capitatus (Looss, 1900).

In 1977, Prieto and Orta (1977) observed two new cestode species in Cuba, after necropsy practiced to 35 equines in Havana, Camagüey, and Oriente: Anoplocephala magna and Parapoteriostomum mamillana. Accordingly, the three species of equine cestodes were reported. Then, a helminthological necropsy revealed a 87.5% prevalence of A. perfoliata in 16 equines in Villa Clara province, with an invasive intensity of 80-450 parasites per animal (Hernández and Brito, 2011).

More recently, research done by the parasitology team at the University of Camagüey showed the presence of nematode Cylicostephanus minutus (deposited in CZACC No. 11.7044), in Turiguano Ranch, Ciego de Avila province (Salas-Romero et al., 2017a), and in carriage horses in the city of Camagüey, which were collected in vivo from the feces of equines after anti-parasitic treatment. In addition, gender Poteriostrongylus was detected through larvoscopic analysis in herds of several provinces of Cuba (Salas-Romero et al., 2014b; Salas-Romero et al., 2017b; Salas-Romero et al., 2018).

According to Salas-Romero (2018), to present, at least nine of the cyathostome species have developed benzimidazole resistance in various equine herds in Cuba, namely species Cylicoclycus nassatus (Looss, 1900), Cylicostephanus longibursatus (Yorke and Macfie, 1918), Cyathostomum catinatum (Looss, 1900), Cyathostomum pateratum (Yorke and Macfie, 1919), Cylicostephanus goldi (Boulenger, 1917), Coronoclycus coronatus (Looss, 1900), Cylicostephanus minutus (Yorke and Macfie, 1918), Coronoclycus labiatus (Looss, 1900), Cylicostephanus calicatus (Looss, 1900), and Habronema muscae (Carter, 1865). In turn, species Cylicoclycus nassatus, Cylicostephanus longibursatus, and Cyathostomum catinatum showed higher prevalence. Moreover, the three species totaled more than 90% of the nematodes identified from the over 80% of the herds studied (Salas-Romero, 2018).

Other non-helminth parasites are frequently observed in Cuban equines. Among equidae blood protozooses, species Babesia caballi and Theileria equi have been reported (Espaine and Lines, 1996), with 25 and 73% prevalence, respectively, and 20% concomitant infections (Díaz-Sánchez et al., 2018).

Among the arthropods, various species of Ixodides were previously reported (Espaine and Lines, 1996). Dermacentor nitens and Amblyomma cajennense were commonly observed by the authors of this paper under the Cuban conditions, though Rhipicephalus (Boophilus) microplus can also be observed to parasitize equidae. The impact of tick infestations on equines is considerable in herds in San Vicente (Jimaguayú, Camagüey), for instance, where large infestations of young animals caused necrosis in extensive areas of
the skin, and even the death of offspring (data not published by the authors), adding to their roles as vectors.

So far, species *Gastrophilus nasalis* and *G. intestinalis* have been reported in Cuba (Espaine and Lines, 1996). Gastrophylosis is one instance of necropsy in horses with colics found at Turiguano Ranch, causing several deaths in the area. In Camagüey, it has been observed in vivo, in feces, after treatment with Ivermectin (data not published by the authors).

CONCLUSIONS

Due to the large number of nematode species described in the literature in recent years, and the few studies conducted in Cuba, the equine helminth fauna on the island is very likely to be composed of a greater number of species than the ones reported in this paper. Accordingly, further comprehensive studies should be done in order to customize programs to confront and control nematodes in equines.

REFERENCES

An Update in Helminth Fauna and Other Equine Parasites in Cuba

Received: 2-12-19
Accepted: 3-1-19