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ABSTRACT

Background: Ruminants consume pasture and forages, but occasionally they do not have the
necessary capacity for this, affecting digestibility. One of the strategies to improve quality is the
utilization of exogenous enzymes that break down the structure of the cell wall, and permit better
nutrient intake. Aim. To conduct a comprehensive study on the action mechanisms of exogenous
fibrolytic enzymes in ruminant nutrition. Development: The plant cell wall is made of cellulose,
hemicellulose, and lignin. The cellulases, hemicellulases, and lignocellulolytic enzymes are
engaged in their degradation, being used satisfactorily in the diet to enhance digestibility with
positive effects on other species’ production. Conclusions: This practice favors greater nutrient
availability for digestion and absorption, and it contributes to the improvement of physiological
processes, and on many occasions, it is evidenced through livestock yield increases.
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INTRODUCTION

Ruminant rearing is one of the most relevant activities in agriculture. The meat and milk are first-
need items, so their production and sales increase thanks to high consumption demands by the
world population (Garcia, 2020).

In tropical countries, ruminant nutrition is mainly based on pastures and forages; however,
productivity and the nutritional value of plants depend on the existing climatic conditions, annual
precipitation distribution, and other environmental and management factors (Roca-Cedefio et al.,
2020). In these areas, the high temperatures raise plant tissue lignification, and consequently,
their digestibility is reduced (Mendoza et al., 2014).

One of the strategies to enhance forage digestibility in tropical regions is the addition of
exogenous fibrolytic enzymes (Kumar and Sridhar, 2021). Accordingly, the aim of this review
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paper is to conduct an in-depth study of the action mechanisms in the application of exogenous
fibrolytic enzymes to feed ruminants.

DEVELOPMENT
Ruminant nutrition

Nutrition is one of the most relevant factors to increase the livestock potential during the different
growth stages. Reaching proper animal weight requires adequate planning of available resources,
so it is necessary to supply the necessary nutrients to the animals in order to meet their feeding
needs and achieve higher productive development (Nunez et al., 2020).

In recent years, the increased prices of plant cellulosic fiber and feedstuffs led to a search for
alternative sources of animal nutrition (Evan and Marcos, 2020). One of the proposals is the
utilization of agro-industrial wastes for cattle nutrition in tropical areas (Escorza et al., 2019;
Godoy et al., 2020)

However, the harvest residues are poorly digestible, and have low energy, mineral, and vitamin
contents (Kumar and Sridhar, 2021). Nevertheless, their utilization through proper feeding
systems, enables the use of locally-available agro-industrial wastes for cattle nutrition (Piracon,
2020)

The fibrolytic enzymes produced by anaerobic microorganisms are involved in the digestion of
fiber, which takes place in the rumen. Therefore, the utilization of exogenous enzymes to treat
low-quality feeds permits a reassessment of alternative sources of feeds for these species (Kumar
and Sridhar, 2021). To better understand the mode of action of biocatalysts, it is important to
know the chemical composition of the plant cellular wall.

The plant cellular wall

It is made of cellulose, hemicellulose, and lignin. In higher plants, cellulose appears in the form
of microfibrillae within the primary and secondary walls, as a result of hydrogen bonds between
the chains. It is an insoluble polymer made of glucose residues linked through glucoside bonds
B(1,4), which are oriented in highly-arranged crystalline parallel domains with more disorganized
amorphous regions (Lee et al., 1997).

Hemicellulose is the second most abundant structural polysaccharide in plants, which is
associated with cellulose in most plant species (Bhat and Hazlewood, 2001). It is mainly
composed of D-glucose, D-galactose, D-mannose, D-xylose, and L-arabinose units, which are
bound in several combinations (Mendoza et al., 2014).

Lignin is strongly intertwined chemically, with the carbohydrate of the cell wall through ether
bonds that make up an extensive grid, and it is recalcitrant to degradation (Moore and Jung,
2001). It is a complex, soluble polymer with phenylpropane unit branches, which reinforces the
cellulose and hemicellulose bindings (Tarasov et al., 2018). It has a variable structure, and
depends on the plant type, phenological stage, and the photosynthetic rate (Ortiz, 2010).
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The decomposition of the plant cellular wall entails the synergistic involvement of several
biocatalysts. Some of the most widely-used are cellulases, hemicellulases, and lignocellulolytic
enzymes (Bajaj and Mahajan, 2019).

These enzymes are engaged in the degradation of the plant cellular wall
Cellulases

Cellulases are constituted by an enzyme complex that catalyzes the degradation of cellulose, and
is formed by B-(1,4) endonucleases (E.C. 3.2.1.4), cellobiohydrolases (EC 3.2.1.91) and B-(1,4)
glycosidase (E.C. 3.2.1.21). All of them work synergically and sequentially, their end product is
glucose monomers (Bhardwaj et al., 2021).

According to the mechanisms suggested for cellulose degradation, enzymes [-(1,4)
endonucleases catalyze the hydrolysis of internal bonds B-(1,4) glycoside of the amorphous
region of cellulose, at random, with new ends that facilitate the action of cellobiohydrolases
(CBH), and release units of cellobiose at the terminal ends. Among the CBH are the CBH-I forms
that act from the reducing end of the cellulose chain, and the CBH II, which release cellobiose
from the nonreducing end (Kumar and Verma, 2020). When the amorphous cellulose areas are
degraded, the hydrolysis of the crystalline region takes place thanks to the synergistic action of
endo and exocellulases. The B-glucosidases hydrolysis the cellobiose into glucose (Jgrgensen et
al., 2007).

Hemicellulases

Hemicellulases constitute a group of enzymes that catalyze the hemicellulose degradation
reactions. Because of the variability of the hydrolyzing substrates, they can be classified
depending on the type of hemicellulose or bond broken. Among them are xylanases, B-
mannanases, Xxylosidases, arabinases, and galactosidases (lrdizoz, 2011). Some of the most
commonly used for animal nutrition are the xylanases, cellulases, and - mannanases (Craig et
al., 2019; Saeed et al., 2019).

e Xylanases

The xylanases (EC 3.2.1.8) catalyze the hydrolysis of bonds B-(1,4) glycosides of xylane, at
random, to produce xylo-oligomers (Malhotra and Chapadgaonkar, 2018). Xylane is the most
abundant polymer in the hemicellulose of the plant cellular walls. It comprises between 20 and
40% of the biomass, so its degradation is fundamental to make proper use of the products of
lignocellulosic materials, as a source of useful energy (Polizeli et al., 2005). This enzyme is used
to treat diets with a high content of insoluble fibers for monogastric animal nutrition (Matos et
al., 2018).

e p-Mannanases

The enzymes involved in the hydrolysis of mannane linear polymers are -mannanases (EC
3.2.1.78), B-mannosidases (EC 3.2.1.25) and B-glucosidases (EC 3.2.1.21). Other enzymes like a-
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galactosidases and the acetyl-mannan esterases, are required to remove the substitutes of the
lateral chain (Moreira and Filho, 2008).

The most outstanding enzyme of this complex is f-mannanase, which produces short p-(1,4)
mannane oligomers, and then turn into mannose molecules due to the action of B-mannosidases
(Chauhan, Puri, Sharma, & Gupta, 2012). These proteins catalyze the hydrolysis of B-(1,4)-D-
mannanoside bonds of mannanes, galactomannanes, and glucomannanes, at random (Yamabhai
etal., 2016).

Lignocellulolytic enzymes

These enzymes modify the lignin structure through oxidizing-reduction mechanisms. They are
part of the lignin-peroxidase, manganese-peroxidase, versatile peroxygenase, and lacase
complex. The utilization of these catalysts to pre-treat biomass is critical to access the
polysaccharide matrix, an essential stage in efficient fiber degradation.

The covalent bonds of the lignin molecule are mostly aryl-ether, aryl-aryl, and carbon-carbon,
and they are not hydrolyzed through typical mechanisms (Brink et al., 2019). The catalytic
mechanism is based on the generation of intermediate free radicals with a high reactivity, which
are capable of accepting or ceding an electron, and therefore, may generate the oxidation or
reduction of these compounds. The lignocellulolytic enzymes act synergistically with the rest of
the enzymatic complexes (Tarasov et al., 2018).

Mode of action of exogenous enzymes in ruminants

The mode of action of biocatalysts used in the nutrition of these species is a complex and
significant issue tackled in current research. According to Velazquez-De Lucio et al. (2021), the
action of every enzyme is different and interdependent; its inclusion in feedstuffs should be
rational and careful to achieve the best possible effect. Besides, the enzymes act directly and
indirectly on the substrates; for instance, on the lignocellulolytic complex, they degrade the lignin
as the main effect. However, they also provide access to the nutrients bound to that structure,
especially carbohydrates and proteins, as a secondary effect (Beauchemin et al., 2004).

Biocatalysts may change the food quality before consumption, through certain stimuli during
rumen digestion, and/or the post-rumen digestive tract. Although the pH, temperature, and
substrate type conditions outside the rumen not always favor the action of enzymes (Mcgrath et
al., 2018). In the rumen, they act directly in the digestion of the food, or stimulate the digestive
activity indirectly, in synergy with the microorganisms in the rumen (LOpez-Ordaz et al., 2020).
Likewise, the enzymes might stay alive in the back digestive tract, and contribute indirectly to
nutrient absorption due to laccase reduction of the viscosity of the intestinal ingesta (Ojha et al.,
2019).

Moreover, the conditions of the substrate affect the action of enzymes, which are more effective
in the humid feeds than in the dry feeds, so the presence of water facilitates their solubility, and it
is essential to reduce the polymers into monomers. According to Nsereko et al. (2000), the

Journal of Animal Prod., 34(3), https://revistas.reduc.edu.cu/index.php/rpa/article/view/e4298



Matos Trujillo, M., Valdivia Avila, A., Carbot Solis, L.

application of solid enzyme preparations does not favor the pre-ingestive interaction between the
enzymes and the feeds.

The response to supplementation with fibrolytic enzymes is variable (Bedford, 2018). Among the
factors that mediate the effectiveness of these additives are the type of enzyme, its stability and
specificity of the action, the animals (species, age, and morpho physiology of the gastrointestinal
tract), and the characteristics of the diets (Valdivia et al., 2019). In that sense, the effect may be
affected by the dose, the preparation of the product, the method of administration, and the
enzymatic action mechanism (Tirado-Gonzaélez et al., 2018).

Results of the application of exogenous enzymes in ruminants

The fibrolytic enzymes were not used in ruminant nutrition due to the hypothesis of their possible
immediate hydrolysis by the rumen proteases. Besides, the rumen microorganisms were known to
degrade the fibrous substrates (Beauchemin et al., 2004). However, studies conducted later,
demonstrated the advantages of this practice in polygastric animals.

Research done in recent decades found that the enzymatic treatment of forages led to increases in
fiber digestibility in in vitro and in vivo experiments (lannaccone et al., 2022). Most authors
coincide that exogenous enzymes enhance fiber digestion (Pech-Cervantes et al., 2021), even
when it is only 15% of rumen activity (Rosser et al., 2022). The effects of fibrolytic enzymes on
forage degradation are significant, though the changes in the molar portion of these compounds
may be inconsistent, since they depend on the fibrous source, the doses administered, and their
impact on rumen fermentation (Kumar and Sridhar, 2021).

The international literature reports the utilization of several enzymatic systems in ruminant
production. Selzer et al. (2021) demonstrated that the digestibility of the neutral detergent fiber
(NDF) and the acid detergent fiber (ADF) improved following the treatment using cellulases and
xylanases. Da Costa et al. (2019) noted that xylanases are particularly important in ruminant
nutrition, as they increase disease resistance, and reduce the environmental impact by reducing
animal methane production. Likewise, research studies done by Santana et al. (2018) and
Miranda-Romero et al. (2022), corroborated that the digestibility of the fibrous portion depends
on the combination of enzymes, the dose, and the type of substrate used.

Another advantage of enzymatic treatment is the improvements in the quality of non-
conventional feeds (Jimoh, 2018). Authors like Abid et al. (2019) used xylanases, exo and
endonucleases to enhance the nutritional value of grape spirit, whereas Cornejo-Cornejo et al.
(2020) used xylanases to improve in vitro digestibility of Musa paradisiacal L. pod husks, and
Alberto (2020) reported improvements in the nutritional quality of wheat stalks and sugarcane
bagasse digestibility after treatment with laccase isolated from mushrooms.

The exogenous enzymes also have a positive impact on milk production. For instance, Refat et al.
(2018) reported increases in milk production and digestibility of dry matter by cows fed on silage
(34$ barley), and treated with fibrolytic enzymes. Furthermore, Golder et al. (2019) found
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increases in milk yields in field experiments, as a response to the application of enzymes in cows,
and associated it with the elevated digestibility of feeds after treatment.

Likewise, dairy yields, mean daily weight, and feed consumption improved in goats, with the
inclusion of the enzymatic extract of Pleorutus ostreatus in the diet (Trejo et al., 2017). Mendoza
et al., (2014) highlighted that the increase of dairy and meat yields after the treatment with
exogenous enzymes responds to greater digestibility of NDF and ADF.

In turn, Bortoluzzi et al. (2019) and Qiao et al. (2018), demonstrated that the treatment using -
mannanases promoted the production of neutrophils, leukocytes, and macrophages involved in
the reduction of somatic cell counts in the milk, which is a potential indicator of mastitis (Lopez-
Ordaz et al., 2020). This disease causes inflammation of the mammary gland, and it is associated
with infectious factors leading to enormous economic losses in the dairy industry (Beni¢ et al.,
2018).

The addition of f-mannanase in Holstein-Friesen cows under advanced lactation could reduce the
consumption of dry matter in 1.8 kg per cow, compared to the control (Tewoldebrhan et al.,
2017). This reduction in consumption was attributed to a seemingly greater digestibility of dry
matter, organic matter, and protein. Moreover, Kebreab, (2016) found that the addition of B-
mannanases to the diet (0.10%) raised the nitrogen conversion efficiency, milk protein, weight
gain, and udder hygiene of lactating cows, without affecting methane and fecal nitrogen
depositions.

According to Lopez-Ordaz et al.(2020), health improvements due to enzymatic supplementation
occurs because the nitrogen requirements in animals are supplemented with the consumption of
dry matter and the protein in the diet. That way, high energy costs due to the deposition of excess
nitrogen may be prevented, with ensuing environmental and economic benefits.

Overall, the effect of exogenous enzymes on the degradation of dry matter, fiber hydrolysis, gas
production, and milk yields, largely depend on the species, forage proportion and quality, and the
number of ingredients included in the diet (Tirado-Gonzélez et al., 2021).

CONCLUSIONS

This practice offers greater nutrient availability for digestion and absorption, and it contributes to
better physiological processes, and on many occasions, it can be evidenced through cattle yield
increases.
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