Paradojas que limitan un conocimiento real de la tuberculosis y pueden favorecer su expansión durante la COVID-19
Resumen
Antecedentes: La tuberculosis es la pandemia que más muertes ha causado a la humanidad. Objetivo. alertar sobre incongruencias que limitan la aproximación al conocimiento real de la tuberculosis y pueden favorecer su expansión durante la COVID-19. Desarrollo: seis incongruencias limitan el conocimiento real de la enfermedad: a) su subestimación, b) considerarla exclusiva de la pobreza, c) desestimar los integrantes zoonóticos del complejo Mycobacterium tuberculosis, d) subvalorar a los animales como reservorios, e) ignorar la relación enfermedad - ecología y f) el desfasaje entre la taxonomía molecular actual y las anteriores limitantes. Factores que la descontextualizan, distorsionan su estado real y retardaron las decisiones para su erradicación hasta 2018. Desde 2020, la casi absoluta subordinación de los sistemas salud a la COVID-19, interfieren este propósito y pueden provocar un retroceso de la tuberculosis a escenarios similares a los de 2012. Los estudios sobre posibles sinergias entre ambas pandemias, aunque escasos, pronostican que los coinfectados tienen 2,21 - 2,27 veces más probabilidades de morir o desarrollar una enfermedad grave. Conclusiones: la tuberculosis es la pandemia más antigua y letal para la humanidad; también la más ignorada. A ello han contribuido los excesos de confianza, subestimar: las áreas menos favorecidas del planeta, la participación de animales, el entorno y no adecuar los conocimientos taxonómicos de avanzada en función de estas limitantes. Situación que se agrava ante la prioridad que demanda la COVID-19. Valorar las incongruencias que limitaron un conocimiento más objetivo de la tuberculosis sería un primer paso para su futura erradicación.
Palabras claves: complejo Mycobacterium tuberculosis, pandemia, subnotificación, tuberculosis, zoonosis (Fuente MeSH)
Descargas
Citas
Allen, A. R., Ford, T., & Skuce, R. A. (2021). Does Mycobacterium tuberculosis var. bovis Survival in the Environment Confound Bovine Tuberculosis Control and Eradication? A Literature Review. Veterinary medicine international. https://doi.org/10.1155/2021/8812898
Arnot, L. F., & Michel, A. (2020). Challenges for controlling bovine tuberculosis in South Africa. Onderstepoort Journal of Veterinary Research, 87(1), 1-8. https://hdl.handle.net/10520/EJC-1e8c7738f4
Barba, J.R. Tuberculosis. (2020) ¿Es la pandemia ignorada? Rev Mex Pato Clin Med Lab., 67 (2), 93-112. https://dx.doi.org/10.35366/95554
Barberis, I., Bragazzi, N. L., Galluzzo, L., & Martini, M. (2017). The history of tuberculosis: from the first historical records to the isolation of Koch's bacillus. Journal of preventive medicine and hygiene, 58(1), E9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432783/
Barreto Argilagos, G., Rodríguez Torrens, H., & Barreto Rodríguez, H. (2021). Brucelosis, aspectos que limitan su justa valoración. Revista de Salud Animal, 43(1). http://scielo.sld.cu/scielo.php?pid=S0253570X2021000100001&scri-pt=sci_arttext&tlng=pt
Barreto, G., & Rodríguez, H. (2018). Capítulo 11. Enfermedades bacterianas frecuentes en las cabras. Adela Bidot y Juan J. Paretas. La Habana.
Barreto Argilagos, G., & Rodríguez Torrens, H. de la C. (2019). Dos zoonosis ancestrales reemergen y se complementan. Revista de Producción Animal, 31(1), 58-60. https://revistas.reduc.edu.cu/index.php/rpa/article/view/e2679
Byrne, A. W., Barrett, D., Breslin, P., Madden, J. M., O’Keeffe, J., & Ryan, E. (2021). Future Risk of Bovine Tuberculosis (Mycobacterium bovis) Breakdown in Cattle Herds 2013–2018: A Dominance Analysis Approach. Microorganisms, 9(5), 1004. https://doi.org/10.3390/microorganisms9051004
Cardona, P. J., Català, M., & Prats, C. (2021). The Origin and Maintenance of Tuberculosis is Explained by Its Subclinical Course, the Neolithic Revolution Being the Trigger for Its Devastating Deadly Drift. https://doi.org/10.21203/rs.3.rs-437338/v1
Di Gennaro, F., Gualano, G., Timelli, L., Vittozzi, P., Di Bari, V., Libertone, R., Cerva, C., Pinnarelli, L., Nisii, C., Ianniello, S., Mosti, S., Bevilacqua, N., Iacomi, F., Mondi, A., Topino, S., Goletti, D., Vaia, F., Ippolito, G., Girardi, E., & Palmieri, F. (2021). Increase in tuberculosis diagnostic delay during first wave of the COVID-19 pandemic: data from an Italian infectious disease referral hospital. Antibiotics, 10(3), 272. https://doi.org/10.3390/antibiotics10030272
Diamond, J., & Bellwood, P. (2003). Farmers and their languages: the first expansions. Science, 300(5619), 597-603. https://www.science.org/doi/abs/10.1126/science.1078208
Díaz Rodríguez, R., Lemus Molina, D., & Martínez Romero, M. R. (2020). La tuberculosis en Cuba en tiempos de COVID-19: ¿retroceso en su plan de eliminación?. Revista Cubana de Medicina Tropical, 72(3). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602020000300014
Fei, H., Yinyin, X., Hui, C., Ni, W., Xin, D., Wei, C., Tao, L., Shitong, H., Miaomiao, S., Mingting, C., Keshavjee, S., Yanlin, Z., Chin, D. P., & Jianjun, L. (2020). The impact of the COVID-19 epidemic on tuberculosis control in China. The Lancet Regional Health-Western Pacific, 3, 100032. https://doi.org/10.1016/j.lanwpc.2020.100032
Forbes, B. A. (2017). Mycobacterial taxonomy. Journal of clinical microbiology, 55(2), 380-383. https://doi.org/10.1128/JCM.01287-16
Gates, B. (2015). The next epidemic—lessons from Ebola. New England Journal of Medicine, 372(15), 1381-1384. https://www.nejm.org/doi/full/10.1056/NEJMp1502918
Gupta, R. S., Lo, B., & Son, J. (2018). Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Frontiers in microbiology, 9, 67. https://doi.org/10.3389/fmicb.2018.00067
Gutierrez, M. C., Brisse, S., Brosch, R., Fabre, M., Omaïs, B., Marmiesse, M., Supply, P., & Vincent, V. (2005). Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS pathogens, 1(1), e5. https://doi.org/10.1371/journal.ppat.0010005
Harries, A. D., Martinez, L., & Chakaya, J. M. (2021). Tackling climate change: measuring the carbon footprint of preventing, diagnosing and treating TB. Public health action, 11(1), 40. https://doi.org/10.5588/pha.20.0076
Kasaeva, T. (2020). Coping with TB in the time of COVID-19. https://www.who.int/docs/default-source/documents/tuberculosis/tbcovid-webinar-presentation.pdf?sfvrsn=1377b5b1_8
Katale, B. Z., Mbugi, E. V., Keyyu, J. D., Fyumagwa, R. D., Rweyemamu, M. M., Van Helden, P. D., Dockrell, H. M., & Matee, M. I. (2019). One Health approach in the prevention and control of mycobacterial infections in Tanzania: lessons learnt and future perspectives. One Health Outlook, 1(1), 1-8. https://doi.org/10.1186/s42522-019-0002-1
Kleeberg, H. H. (1984). Human tuberculosis of bovine origin in relation to public health. Revue Scientifique et Technique Office International des Epizooties, 3(1), 11-32. https://www.semanticscholar.org/paper/Human-tuberculosis-of-bovine-origin-in-relation-to-Kleeberg/2105051790e223acf8abb302b3f5f1228c85eaef
Lekko, Y. M., Ooi, P. T., Omar, S., Mazlan, M., Ramanoon, S. Z., Jasni, S., Jesse, F. F. A., & Che-Amat, A. (2020). Mycobacterium tuberculosis complex in wildlife: Review of current applications of antemortem and postmortem diagnosis. Veterinary world, 13(9), 1822. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566238/
Long, R., King, M., Doroshenko, A., & Heffernan, C. (2020). Tuberculosis and COVID-19 in Canada. E Clinical Medicine, 27. https://doi.org/10.1016/j.eclinm.2020.100584
Maciel, E. L., & Silva, P. E. A. D. (2021). Fighting tuberculosis: from 1993 to 2035 during the COVID-19 era. Jornal Brasileiro de Pneumologia, 47. https://doi.org/10.36416/1806-3756/e20210033
Miller, E. F., Manica, A., & Amos, W. (2018). Global demographic history of human populations inferred from whole mitochondrial genomes. Royal Society open science, 5(8), 180543. https://doi.org/10.1098/rsos.180543
Mondal, M. N. I., Nazrul, H. M., Chowdhury, M. R. K., & Howard, J. (2014). Socio-demographic factors affecting knowledge level of Tuberculosis patients in Rajshahi City, Bangladesh. African health sciences, 14(4), 855-865. https://www.ajol.info/index.php/ahs/article/view/111387
Mondoni, M., Centanni, S., & Sotgiu, G. (2020). New perspectives on difficult-to-treat tuberculosis based on old therapeutic approaches. International Journal of Infectious Diseases, 92, S91-S99. https://doi.org/10.1016/j.ijid.2020.02.039
Murray, J. F. (2015). Tuberculosis and World War I. American journal of respiratory and critical care medicine, 192(4), 411-414. https://doi.org/10.1164/rccm.201501-0135OE
One Health input paper for the GF strategy development by the Germany Constituency. (2021). Integration of the One Health approach into the work of the Global Fund to Fight AIDS, TB and Malaria. https://www.theglobalfund.org/media/10617/strategydevelopment_2021onehealthapproach_inputpaper_en.pdf
Oren, A., & Garrity, G. (2018). List of new names and new combinations previously effectively, but not validly, published. International journal of systematic and evolutionary microbiology, 68(7), 1411-1417. https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.002711
Parrish, N. (2019). An update on mycobacterial taxonomy, 2016–2017. Journal of clinical microbiology, 57(5), e01408-18. https://doi.org/10.1128/JCM.01408-18
Paulson, T. (2013). Epidemiology: a mortal foe. Nature, 502(7470), S2-S3. https://doi.org/10.1038/502S2a
Popejoy, M. W., Gasana, J., & Ravikumaran, R. (2017). The pandemic nature of reemerging tuberculosis and the role of population migration in its spread. MOJ Public Health, 6(4), 383-392. https://medcraveonline.com/MOJPH/the-pandemic-nature-of-reemerging-tuberculosis-and-the-role-of-population-migration-in-its-spread.html
Popejoy, M. W., Gasana, J., Ravikumaran, R., Westphal, D., Mendy, A. (2017). The pandemic nature of reemerging tuberculosis and the role of population migration in its spread. MOJ Public Health, 6(4). https://medcraveonline.com/MOJPH/the-pandemic-nature-of-reemerging-tuberculosis-and-the-role-of-population-migration-in-its-spread.html
Riojas, M. A., McGough, K. J., Rider-Riojas, C. J., Rastogi, N., & Hazbón, M. H. (2018). Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. International journal of systematic and evolutionary microbiology, 68(1), 324-332. https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.002507?crawler=true
Candelaria, S. R., Llanes, L. G., & Ranero, V. M. (2015). Evaluación del Programa Nacional de Control de la Tuberculosis en Bauta. Revista Cubana de Higiene y Epidemiología, 52(1), 98-105. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=56204
Sabin, S., Herbig, A., Vågene, Å. J., Ahlström, T., Bozovic, G., Arcini, C., Kühnert, D., & Bos, K. I. (2020). A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex. Genome biology, 21(1), 1-24. https://doi.org/10.1186/s13059-020-02112-1
Das, P. K., & Samal, S. (2018). Microbial biofilms: pathogenicity and treatment strategies. PharmaTutor, 6(1), 16-22. https://doi.org/10.29161/PT.v6.i1.2018.16
Sánchez-Carvajal, J. M., Galán-Relaño, Á., Ruedas-Torres, I., Jurado-Martos, F., Larenas-Muñoz, F., Vera, E., Gómez-Gascón, L., Cardoso-Toset, F., Rodríguez-Gómez, I. M., Maldonado, A., Carrasco, L., Tarradas, C., Gómez-Laguna, J., & Luque, I. (2021). Real-Time PCR validation for Mycobacterium tuberculosis complex detection targeting IS6110 directly from bovine lymph nodes. Frontiers in Veterinary Science, 8, 231. https://doi.org/10.3389/fvets.2021.643111
Santos-Pereira, A., Magalhães, C., Araújo, P. M., & Osório, N. S. (2021). Evolutionary Genetics of Mycobacterium Tuberculosis and HIV-1: "The Tortoise and the Hare”. Microorganisms, 9(1), 147. https://doi.org/10.3390/microorganisms9010147
Stead, W. W. (1997). The origin and erratic global spread of tuberculosis: how the past explains the present and is the key to the future. Clinics in chest medicine, 18(1), 65-77. https://doi.org/10.1016/S0272-5231(05)70356-7
Thapa, J., Nakajima, C., Gairhe, K. P., Maharjan, B., Paudel, S., Shah, Y., Mikota, S. K., Kaufman, G. E., McCauley, D., Tsubota, T., Gordon, S. V., & Suzuki, Y. (2017). Wildlife tuberculosis: An emerging threat for conservation in South Asia. In Global exposition of wildlife management. IntechOpen. https://www.intechopen.com/chapters/52794
Tortoli, E., Brown-Elliott, B. A., Chalmers, J. D., Cirillo, D. M., Daley, C. L., Emler, S., Floto, R. A., Garcia, M. J., Hoefsloot, W., Koh, W. J., Lange, C., Loebinger, M., Maurer, F. P., Moimoto, K., Niemann, S., Richter, E., Turenne, C. Y., Vasireddy, R., Vasireddy, S., Wagner, … & van Ingen, J. (2019). Same meat, different gravy: ignore the new names of mycobacteria. European Respiratory Journal, 54(1). https://erj.ersjournals.com/content/54/1/1900795.short
van de Weg, C. A., de Steenwinkel, J. E., Miedema, J. R., Bakker, M., van Ingen, J., & Hoefsloot, W. (2020). The tough process of unmasking the slow-growing mycobacterium: case report of Mycobacterium microti infection. Access Microbiology, 2(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525059/
Visca, D., Ong, C. W. M., Tiberi, S., Centis, R., D’Ambrosio, L., Chen, B., Mueller, J., Mueller, P., Duarte, R., Dalcolmo, M., Sotgiu, G., Migliori, G. B., & Goletti, D. (2021). Tuberculosis and COVID-19 interaction: a review of biological, clinical and public health effects. Pulmonology, 27(2), 151-165. https://doi.org/10.1016/j.pulmoe.2020.12.012
Wirth, T., Hildebrand, F., Allix-Béguec, C., Wölbeling, F., Kubica, T., Kremer, K., van Soolingen, D., Rüsch-Gerdes, S., Locht, C., Brisse, S., Meyer, A., Supply, P., & Niemann, S. (2008). Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS pathogens, 4(9), e1000160. https://doi.org/10.1371/journal.ppat.1000160
World Health Organization. (2018). UN General Assembly adopts modalities resolution for the UN High-Level Meeting on TB, 26 September 2018. https://www.who.int/news/item/04-04-2018-un-general-assembly-adopts-modalities-resolution-for-the-un-high-level-meeting-on-tb-26-september-2018
World Health Organization. (2018). WHO Updates Blueprint List of Priority Diseases. https://globalbiodefense.com/2018/02/12/who-updates-blueprint-list-of-priority-diseases/
World Health Organization. The End TB Strategy. Geneva, Switzerland: World Health Organization; 2015. Available at: https://www.who.int/tb/strategy/ end-tb/en/
World Health Organization. (2015). The End TB Strategy. Geneva, Switzerland: World Health Organization; 2015. Contract No.: WHO/HTM/TB. https://www.who.int/tb/End_TB_brochure.pdf
Zumla, A., Wang, F. S., Ippolito, G., Petrosillo, N., Agrati, C., Azhar, E. I., Chang, C., El-Kafrawy, S. A., Osman, M., Zitvogel, L., Galle, P. R., Locatelli, F., Gorman, E., Cordon-Cardo, C., O’Kane, C., McAuley, D., & Maeurer, M. (2020). Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy—Achieving global consensus and visibility for cellular host-directed therapies. International Journal of Infectious Diseases, 96, 431-439. https://doi.org/10.1016/j.ijid.2020.05.040
Derechos de autor 2022 Revista de Producción Animal
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Los autores de los artículos publicados en RPA retienen los derechos de autor de su trabajo, de marca y patente, y también sobre cualquier proceso o procedimiento descrito en el artículo, así como a compartir, copiar, distribuir, ejecutar y comunicar públicamente el artículo publicado en la RPA o cualquier parte de aquel siempre que indiquen la fuente de publicación (autores del trabajo, revista, volumen, número y fecha), pero están de acuerdo en que la revista publique los trabajos bajo una licencia Creative Commons.
Licencia Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)