Principales factores que modifican el sistema inmune en camarones peneidos estrategias para un cultivo sostenible

Resumen

Introducción: Con la expansión de enfermedades de camarones a nivel mundial durante las últimas dos décadas incrementó el estudio de factores que modifican el sistema inmune. Revisar los principales factores que modifican la respuesta inmune en camarones peneidos.

Desarrollo: Los factores que afectan el sistema inmune del camarón se clasifican en bióticos y abióticos. Entre los factores abióticos se encuentran la temperatura, la salinidad, el pH y la presencia de compuestos nitrogenados en el medio de cría. Entre los factores bióticos se destaca la caracterización de las microbiotas externas e internas de los animales, el análisis de compuestos bioactivos propios del hábitat y el desarrollo de nuevas metodologías sostenibles en el cultivo como el uso de probióticos y de la tecnología de los flóculos biológicos (biofloc). El sistema inmune se caracteriza por ser especialmente susceptible a los cambios del ambiente. La microbiota y compuestos bioactivos pueden ser importantes herramientas para potenciar el sistema inmune; sin embargo, aún se conoce poco como podría ser utilizada de manera práctica.

Conclusiones: El uso de probióticos y de la tecnología de flóculos biológicos puede ser de gran utilidad para potenciar la respuesta del sistema inmune de manera práctica y hacer los cultivos sostenibles, aun cuando se desconozca el mecanismo por el cual ejercen su efecto.

 

Palabras claves: Factores abióticos, biofloc, probióticos, respuesta inmune, camarón (Fuente: MESH)

Descargas

La descarga de datos todavía no está disponible.

Citas

Akhter, N., Wu, B., Memon, A. M., & Mohsin, M. (2015). Probiotics and prebiotics associated with aquaculture: a review. Fish & shellfish immunology, 45(2), 733-741. https://doi.org/10.1016/j.fsi.2015.05.038

Anaya-Rosas, R. E., Rivas-Vega, M. E., Miranda-Baeza, A., Piña-Valdez, P., & Nieves-Soto, M. (2019). Effects of a co-culture of marine algae and shrimp (Litopenaeus vannamei) on the growth, survival and immune response of shrimp infected with Vibrio parahaemolyticus and white spot virus (WSSV). Fish & shellfish immunology, 87, 136-143. https://doi.org/10.1016/j.fsi.2018.12.071

Aoki, T., Wang, H. C., Unajak, S., Santos, M. D., Kondo, H., & Hirono, I. (2011). Microarray analyses of shrimp immune responses. Marine Biotechnology, 13(4), 629-638. https://doi.org/10.1007/s10126-010-9291-1

ASEAN. (1978). Manual on Pond Culture of Penaeid Shrimp. ASEAN National Coordinating Agency of the Philippines, Ministry of Foreign Affairs.

Avnimelech, Y. (2009). Biofloc technology: a practical guide book. World Aquaculture Society. https://www.cabdirect.org/cabdirect/abstract/20113266301

Burgents, J. E., Burnett, K. G., & Burnett, L. E. (2005). Effects of hypoxia and hypercapnic hypoxia on the localization and the elimination of Vibrio campbellii in Litopenaeus vannamei, the Pacific white shrimp. The Biological Bulletin, 208(3), 159-168. https://www.journals.uchicago.edu/doi/abs/10.2307/3593148

Burnett, K., Iliff, S., & Burnett, L. (2000). Chronic sub-lethal hypoxia increases susceptibility of Litopenaeus vannamei to bacterial challenge. In AMERICAN ZOOLOGIST 40(6), 961-961. 1041 NEW HAMPSHIRE ST, LAWRENCE, KS 66044 USA: AMER SOC ZOOLOGISTS.

Camargo, J. A., Alonso, A., & Salamanca, A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58(9), 1255-1267. https://doi.org/10.1016/j.chemosphere.2004.10.044

Campa-Córdova, A. I., Hernández-Saavedra, N. Y., & Ascencio, F. (2002). Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comparative biochemistry and physiology part C: Toxicology & pharmacology, 133(4), 557-565. https://doi.org/10.1016/S1532-0456(02)00125-4

Cardona, E., Lorgeoux, B., Chim, L., Goguenheim, J., Le Delliou, H., & Cahu, C. (2016). Biofloc contribution to antioxidant defence status, lipid nutrition and reproductive performance of broodstock of the shrimp Litopenaeus stylirostris: Consequences for the quality of eggs and larvae. Aquaculture, 452, 252-262. https://doi.org/10.1016/j.aquaculture.2015.08.003

Cerenius, L., & Söderhäll, K. (2004). The prophenoloxidase‐activating system in invertebrates. Immunological reviews, 198(1), 116-126. https://doi.org/10.1111/j.0105-2896.2004.00116.x

Cezare-Gomes, E. A., del Carmen Mejia-da-Silva, L., Pérez-Mora, L. S., Matsudo, M. C., Ferreira-Camargo, L. S., Singh, A. K., & de Carvalho, J. C. M. (2019). Potential of microalgae carotenoids for industrial application. Applied biochemistry and biotechnology, 188(3), 602-634. https://doi.org/10.1007/s12010-018-02945-4

Chand, R. K., & Sahoo, P. K. (2006). Effect of nitrite on the immune response of freshwater prawn Macrobrachium malcolmsonii and its susceptibility to Aeromonas hydrophila. Aquaculture, 258(1-4), 150-156. https://doi.org/10.1016/j.aquaculture.2006.05.001

Cheng, W., Liu, C. H., & Chen, J. C. (2002). Effect of nitrite on interaction between the giant freshwater prawn Macrobrachium rosenbergii and its pathogen Lactococcus garvieae. Diseases of aquatic organisms, 50(3), 189-197. https://www.int-res.com/abstracts/dao/v50/n3/p189-197/

Cheng, W., Wang, L. U., & Chen, J. C. (2005). Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aquaculture, 250(3-4), 592-601. https://doi.org/10.1016/j.aquaculture.2005.04.060

Collazos-Lasso, L. F., & Arias-Castellanos, J. A. (2015). Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia. Una revisión. Orinoquia, 19(1), 77-86. https://www.redalyc.org/pdf/896/89640816007.pdf

Cornejo-Granados, F., Lopez-Zavala, A. A., Gallardo-Becerra, L., Mendoza-Vargas, A., Sánchez, F., Vichido, R., Brieba, L. G., Viana, M. T., & Ochoa-Leyva, A. (2017). Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between Wild, Aquacultured and AHPND/EMS outbreak conditions. Scientific reports, 7(1), 1-15. https://doi.org/10.1038/s41598-017-11805-w

Crab, R. (2010). Bioflocs technology: an integrated system for the removal of nutrients and simultaneous production of feed in aquaculture (Doctoral dissertation, Ghent University). http://hdl.handle.net/1854/LU-1043318

Cui, Y., Ren, X., Li, J., Zhai, Q., Feng, Y., Xu, Y., & Ma, L. (2017). Effects of ammonia-N stress on metabolic and immune function via the neuroendocrine system in Litopenaeus vannamei. Fish & shellfish immunology, 64, 270-275. https://doi.org/10.1016/j.fsi.2017.03.028

Dai, W., Sheng, Z., Chen, J., & Xiong, J. (2020). Shrimp disease progression increases the gut bacterial network complexity and abundances of keystone taxa. Aquaculture, 517, 734802. https://doi.org/10.1016/j.aquaculture.2019.734802

Dantzler, A. S., Burnett, K. G., & Burnett, L. E. (2001). Effects of hypercapnic hypoxia and respiratory burst inhibition on the bactericidal activity of hemocytes from the penaeid shrimp Litopenaeus vannamei. In AMERICAN ZOOLOGIST 41(6), 1422-1423. 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA: SOC INTEGRATIVE COMPARATIVE BIOLOGY.

Dong, J., Zhao, Y. Y., Yu, Y. H., Sun, N., Li, Y. D., Wei, H., Yang, Z. Q., Li, X. D., & Li, L. (2018). Effect of stocking density on growth performance, digestive enzyme activities, and nonspecific immune parameters of Palaemonetes sinensis. Fish & shellfish immunology, 73, 37-41. https://doi.org/10.1016/j.fsi.2017.12.006

Doroteo, A. M., Pedroso, F. L., Lopez, J. D. M., & Apines-Amar, M. J. S. (2018). Evaluation of potential probiotics isolated from saline tilapia in shrimp aquaculture. Aquaculture International, 26(4), 1095-1107. https://doi.org/10.1007/s10499-018-0270-2

Duan, Y., Liu, Q., Wang, Y., Zhang, J., & Xiong, D. (2018). Impairment of the intestine barrier function in Litopenaeus vannamei exposed to ammonia and nitrite stress. Fish & shellfish immunology, 78, 279-288. https://doi.org/10.1016/j.fsi.2018.04.050

Ekasari, J., Azhar, M. H., Surawidjaja, E. H., Nuryati, S., De Schryver, P., & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish & shellfish immunology, 41(2), 332-339. https://doi.org/10.1016/j.fsi.2014.09.004

Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. Biomass now-cultivation and utilization, 301-328. http://dx.doi.org/10.5772/53902

FAO. (2018). The State of World Fisheries and Aquaculture 2018‐Meeting the sustainable development goals. Rome. Licence: CC BY‐NC‐SA 3.0 IGO.

Ferraris, R. P., Parado-Estepa, E. D., de Jesus, E. G., & Ladja, J. M. (1987). Osmotic and chloride regulation in the hemolymph of the tiger prawn Penaeus monodon during molting in various salinities. Marine Biology, 95(3), 377-385. https://doi.org/10.1007/BF00409568

Ferreira, N. C., Bonetti, C., & Seiffert, W. Q. (2011). Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture, 318(3-4), 425-433. https://doi.org/10.1016/j.aquaculture.2011.05.045

Flegel, T. W. (2019). A future vision for disease control in shrimp aquaculture. Journal of the World Aquaculture Society, 50(2), 249-266. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jwas.12589

Fregoso-López, M. G., Morales-Covarrubias, M. S., Franco-Nava, M. A., Ponce-Palafox, J. T., Fierro-Sañudo, J. F., Ramírez-Rochín, J., & Páez-Osuna, F. (2018). Effect of nitrogen compounds on shrimp Litopenaeus vannamei: histological alterations of the antennal gland. Bulletin of environmental contamination and toxicology, 100(6), 772-777. https://doi.org/10.1007/s00128-018-2349-x

Furtado, P. S., Campos, B. R., Serra, F. P., Klosterhoff, M., Romano, L. A., & Wasielesky, W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquaculture international, 23(1), 315-327. https://doi.org/10.1007/s10499-014-9817-z

Gao, Y., He, Z., Zhao, B., Li, Z., He, J., Lee, J., & Chu, Z. (2017). Effect of stocking density on growth, oxidative stress and HSP 70 of pacific white shrimp Litopenaeus vannamei. Turkish Journal of Fisheries and Aquatic Sciences, 17(5), 877-884. https://www.cabdirect.org/cabdirect/abstract/20173216233

García-Triana, A., Zenteno-Savín, T., Peregrino-Uriarte, A. B., & Yepiz-Plascencia, G. (2010). Hypoxia, reoxygenation and cytosolic manganese superoxide dismutase (cMnSOD) silencing in Litopenaeus vannamei: effects on cMnSOD transcripts, superoxide dismutase activity and superoxide anion production capacity. Developmental & Comparative Immunology, 34(11), 1230-1235. https://doi.org/10.1016/j.dci.2010.06.018

Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition, 125(6), 1401-1412. https://doi.org/10.1093/jn/125.6.1401

Hargreaves, J. A. (1998). Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166(3-4), 181-212. https://doi.org/10.1016/S0044-8486(98)00298-1

Herreid II, C. F. (1980). Hypoxia in invertebrates. Comparative Biochemistry and Physiology Part A: Physiology, 67(3), 311-320. https://doi.org/10.1016/S0300-9629(80)80002-8

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology & hepatology. 11, (506-514). https://aura.abdn.ac.uk/bitstream/handle/2164/4189/nrgastro.2014.66.pdf?sequence=1

Holt, C. C., Bass, D., Stentiford, G. D., & van der Giezen, M. (2020). Understanding the role of the shrimp gut microbiome in health and disease. Journal of invertebrate pathology, 107387. https://doi.org/10.1016/j.jip.2020.107387

Hoseinifar, S. H., Sun, Y. Z., Wang, A., & Zhou, Z. (2018). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in Microbiology, 9, 2429. https://www.frontiersin.org/articles/10.3389/fmicb.2018.02429/full

Imaizumi, K., Tinwongger, S., Kondo, H., & Hirono, I. (2021). Analysis of microbiota in the stomach and midgut of two penaeid shrimps during probiotic feeding. Scientific Reports, 11(1), 1-14. https://doi.org/10.1038/s41598-021-89415-w

Immanuel, G. (2016). Bioencapsulation of brine shrimp Artemia nauplii with probionts and their resistance against Vibrio pathogens. Journal of Fisheries and Aquatic Science, 11(4), 323-330.

Jiang, L. X., & Pan, L. Q. (2005). Effect of dissolved oxygen on immune parameters of the white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 18(2), 185-188. https://europepmc.org/article/med/15580684

Joseph, A., & Philip, R. (2007). Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture, 272(1-4), 87-97. https://doi.org/10.1016/j.aquaculture.2007.08.047

Ju, Z. Y., Forster, I., Conquest, L., & Dominy, W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquaculture Nutrition, 14(6), 533-543. https://doi.org/10.1111/j.1365-2095.2007.00559.x

Karthik, R., Hussain, A. J., & Muthezhilan, R. (2014). Effectiveness of Lactobacillus sp (AMET1506) as Probiotic against Vibriosis in Penaeus monodon and Litopenaeus vannamei Shrimp Aquaculture. Bioscience Biotechnology Research Asia, 11, 297-305. http://dx.doi.org/10.13005/bbra/1423

Kathyayani, S. A., Poornima, M., Sukumaran, S., Nagavel, A., & Muralidhar, M. (2019). Effect of ammonia stress on immune variables of Pacific white shrimp Penaeus vannamei under varying levels of pH and susceptibility to white spot syndrome virus. Ecotoxicology and environmental safety, 184, 109626. https://doi.org/10.1016/j.ecoenv.2019.109626

Kaya, D., Genc, M. A., Aktas, M., Yavuzcan, H., Ozmen, O., & Genc, E. (2019). Effect of biofloc technology on growth of speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquaculture Research, 50(10), 2760-2768. https://doi.org/10.1111/are.14228

Knapp, J. L., Auerswald, L., Hoffman, L. C., & Macey, B. M. (2019). Effects of chronic hypercapnia and elevated temperature on the immune response of the spiny lobster, Jasus lalandii. Fish & shellfish immunology, 93, 752-762. https://doi.org/10.1016/j.fsi.2019.05.063

Knipe, H., Temperton, B., Lange, A., Bass, D., & Tyler, C. R. (2021). Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Reviews in Aquaculture, 13(1), 324-352. https://doi.org/10.1111/raq.12477

Kotiya, A. S., & Vadher, K. H. (2021). Effect of different stocking density on growth, survival on Litopenaeus vannamei (Boone, 1931) in summer and monsoon crop in province of Gujarat States in India. Survey in Fisheries Sciences, 7(3), 71-99. http://sifisheriessciences.com/browse.php?a_id=246&slc_lang=fa&sid=1&printcase=1&hbnr=1&hmb=1

Kulkarni, G. K., & Joshi, P. K. (1980). Some aspects of respiratory metabolism of a penaeid prawn, Penaeus japonicus (Bate)(Crustacea, Decapoda, Penaeidae). Hydrobiologia, 75(1), 27-32. https://doi.org/10.1007/BF00006558

Kumar, S., Shyne Anand, P. S., De, D., Ghoshal, T. K., Alavandi, S. V., & Vijayan, K. K. (2019). Integration of substrate in biofloc based system: Effects on growth performance, water quality and immune responses in black tiger shrimp, Penaeus monodon culture. Aquaculture Research, 50(10), 2986-2999. https://doi.org/10.1111/are.14256

Kumar, V., Roy, S., Meena, D. K., & Sarkar, U. K. (2016). Application of probiotics in shrimp aquaculture: importance, mechanisms of action, and methods of administration. Reviews in Fisheries Science & Aquaculture, 24(4), 342-368. https://doi.org/10.1080/23308249.2016.1193841

Kumlu, M., Türkmen, S., & Kumlu, M. (2010). Thermal tolerance of Litopenaeus vannamei (Crustacea: Penaeidae) acclimated to four temperatures. Journal of Thermal Biology, 35(6), 305-308. https://doi.org/10.1016/j.jtherbio.2010.06.009

Lamela, R. E. L., Silveira Coffigny, R., Quintana, Y. C., & Martínez, M. (2005). Phenoloxidase and peroxidase activity in the shrimp Litopenaeus schmitti, Pérez‐Farfante and Kensley (1997) exposed to low salinity. Aquaculture Research, 36(13), 1293-1297. https://doi.org/10.1111/j.1365-2109.2005.01344.x

Leite, P. H., Barbosa, L., Moura, M. F., Martins, T. X., Povh, J. A., Caetano, R. A., & Correa, F. (2017). Sistema Bioflocos. Anais da X Mostra Científica Famez, Fundacao Universidade Federal de Mato Grosso do sul Servico Publico Fedeeral, Ministerio da Educacao. Campo Grande, 201(7), 308-31.

Li, C. C., Yeh, S. T., & Chen, J. C. (2010). Innate immunity of the white shrimp Litopenaeus vannamei weakened by the combination of a Vibrio alginolyticus injection and low-salinity stress. Fish & shellfish immunology, 28(1), 121-127. https://doi.org/10.1016/j.fsi.2009.10.003

Li, E., Xu, C., Wang, X., Wang, S., Zhao, Q., Zhang, M., Qin, J. G., & Chen, L. (2018). Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Reviews in Fisheries Science & Aquaculture, 26(3), 381-399. https://doi.org/10.1080/23308249.2018.1440530

Li, F., Chang, X., Xu, L., & Yang, F. (2018). Different roles of crayfish hemocytes in the uptake of foreign particles. Fish & shellfish immunology, 77, 112-119. https://doi.org/10.1016/j.fsi.2018.03.029

Liang, Z., Liu, R., Zhao, D., Wang, L., Sun, M., Wang, M., & Song, L. (2016). Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish & shellfish immunology, 54, 523-528. https://doi.org/10.1016/j.fsi.2016.05.009

Lin, Y. C., Chen, J. C., Li, C. C., Morni, W. Z. W., Suhaili, A. S. N., Kuo, Y. H., Chang, Y. H., Chen, L. L., Tsui, W. C., Chen, Y. Y., & Huang, C. L. (2012). Modulation of the innate immune system in white shrimp Litopenaeus vannamei following long-term low salinity exposure. Fish & Shellfish Immunology, 33(2), 324-331. https://doi.org/10.1016/j.fsi.2012.05.006

Liu, C. H., & Chen, J. C. (2004). Effect of ammonia on the immune response of white shrimpLitopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish & Shellfish Immunology, 16(3), 321-334. https://doi.org/10.1016/S1050-4648(03)00113-X

Liu, G., Ye, Z., Liu, D., & Zhu, S. (2018). Inorganic nitrogen control, growth, and immunophysiological response of Litopenaeus vannamei (Boone, 1931) in a biofloc system and in clear water with or without commercial probiotic. Aquaculture International, 26(4), 981-999. https://doi.org/10.1007/s10499-018-0263-1

Liu, K. F., Chiu, C. H., Shiu, Y. L., Cheng, W., & Liu, C. H. (2010). Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish & shellfish immunology, 28(5-6), 837-844. https://doi.org/10.1016/j.fsi.2010.01.012

de Lourdes Cobo, M., Sonnenholzner, S., Wille, M., & Sorgeloos, P. (2014). Ammonia tolerance of L itopenaeus vannamei (B oone) larvae. Aquaculture Research, 45(3), 470-475. https://doi.org/10.1111/j.1365-2109.2012.03248.x

Lu-Qing, P., Ling-Xu, J., & Jing-Jing, M. (2005). Effects of salinity and pH on immune parameters of the white shrimp Litopenaeus vannamei. Journal of Shellfish Research, 24(4), 1223-1227. https://doi.org/10.2983/0730-8000(2005)24[1223:EOSAPO]2.0.CO;2

Lu, X., Kong, J., Luan, S., Dai, P., Meng, X., Cao, B., & Luo, K. (2016). Transcriptome analysis of the hepatopancreas in the Pacific white shrimp (Litopenaeus vannamei) under acute ammonia stress. PloS one, 11(10), e0164396. https://doi.org/10.1371/journal.pone.0164396

McFall-Ngai, M., Hadfield, M. G., Bosch, T. C., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., Rawls, J. F., Reid, A., Ruby, E. G., Rumpho, M., Sanders, J. G., Tautz, D., & Wernegreen, J. J. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences, 110(9), 3229-3236. https://doi.org/10.1073/pnas.1218525110

Medina-Félix, D., López-Elías, J. A., Martínez-Córdova, L. R., López-Torres, M. A., Hernández-López, J., Rivas-Vega, M. E., & Mendoza-Cano, F. (2014). Evaluation of the productive and physiological responses of Litopenaeus vannamei infected with WSSV and fed diets enriched with Dunaliella sp. Journal of invertebrate pathology, 117, 9-12. https://doi.org/10.1016/j.jip.2013.12.004

Mena-Herrera, A., Gutierrez-Corona, C., Linan-Cabello, M., & Sumano-Lopez, H. (2006). Effects of stocking densities on growth of the Pacific white shrimp (Litopenaeus vannamei) in earthen ponds. https://evols.library.manoa.hawaii.edu/handle/10524/19178

Metzger, R., Sartoris, F. J., Langenbuch, M., & Pörtner, H. O. (2007). Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. Journal of thermal biology, 32(3), 144-151. https://doi.org/10.1016/j.jtherbio.2007.01.010

Mikulski, C. M., Burnett, L. E., & Burnett, K. G. (2000). The effects of hypercapnic hypoxia on the survival of shrimp challenged with Vibrio parahaemolyticus. Journal of Shellfish Research, 19(1), 301-311. https://www.researchgate.net/profile/Louis-Burnett/publication/279555751_The_effects_of_hypercapnic_hypoxia_on_the_survival_of_shrimp_challenged_with_Vibrio_parahaemolyticus/links/56b16c2c08aed7ba3feb1f32/The-effects-of-hypercapnic-hypoxia-on-the-survival-of-shrimp-challenged-with-Vibrio-parahaemolyticus.pdf

Millard, R. S., Ellis, R. P., Bateman, K. S., Bickley, L. K., Tyler, C. R., van Aerle, R., & Santos, E. M. (2020). How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. Journal of invertebrate pathology, 107369. https://doi.org/10.1016/j.jip.2020.107369

Miranda-Cruz, M. M., Poom-Llamas, J. J., Godoy-Lugo, J. A., Ortiz, R. M., Gómez-Jiménez, S., Rosas-Rodríguez, J. A., ... & Soñanez-Organis, J. G. (2018). Silencing of HIF-1 in WSSV-infected white shrimp: Effect on viral load and antioxidant enzymes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 213, 19-26. https://doi.org/10.1016/j.cbpc.2018.07.004

Mudagandur, S. S., Gopalapillay, G., Vijayan, K. K., Shanker, A. K., & Shanker, C. (2016). Effect of salinity stress on gene expression in black tiger shrimp Penaeus monodon. Abiotic and biotic stress in plants-Recent advances and future perspectives, 101-120. https://dx.doi.org/10.5772/60477

Nhan, D. K., Milstein, A., Verdegem, M. C., & Verreth, J. A. (2006). Food inputs, water quality and nutrient accumulation in integrated pond systems: a multivariate approach. Aquaculture, 261(1), 160-173. https://doi.org/10.1016/j.aquaculture.2006.07.015

Nurliana, N., Khairunisa, F., Siregar, B. H., Harahap, D. H., Zamzami, R. S., Ayuti, S. R., ... & Rastina, R. (2020). Effect of yeast and lactic acid bacteria probiotic on the growth of tiger shrimp (Penaeus monodon), microbiology and water quality. In E3S Web of Conferences (Vol. 151, p. 01017). EDP Sciences. https://doi.org/10.1051/e3sconf/202015101017

Panigrahi, A., Das, R. R., Sivakumar, M. R., Saravanan, A., Saranya, C., Sudheer, N. S., ... & Gopikrishna, G. (2020). Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish & shellfish immunology, 98, 477-487. https://doi.org/10.1016/j.fsi.2020.01.021

Phianphak, W., Rengpipat, S., Piyatiratitivorakul, S., & Menasveta, P. (1999). Probiotic use of Lactobacillus spp. for black tiger shrimp, Penaeus monodon. Journal of Scientific Research, Chulanokorn University, 24, 41-51. https://thaiscience.info/Journals/Article/CJSR/10324219.pdf

Ponce-Palafox, J., Martinez-Palacios, C. A., & Ross, L. G. (1997). The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157(1-2), 107-115. https://doi.org/10.1016/S0044-8486(97)00148-8

Racotta, I. S., Palacios, E., & Méndez, L. (2002). Metabolic responses to short and long-term exposure to hypoxia in white shrimp (Penaeus vannamei). Marine and Freshwater Behaviour and Physiology, 35(4), 269-275.

Ringø, E. (2020). Probiotics in shellfish aquaculture. Aquaculture and Fisheries, 5(1), 1-27. https://doi.org/10.1016/j.aaf.2019.12.001

Rodrıguez, J., & Le Moullac, G. (2000). State of the art of immunological tools and health control of penaeid shrimp. Aquaculture, 191(1-3), 109-119. https://doi.org/10.1016/S0044-8486(00)00421-X

Servin Arce, K., de Souza Valente, C., do Vale Pereira, G., Shapira, B., & Davies, S. J. (2021). Modulation of the gut microbiota of Pacific white shrimp (Penaeus vannamei Boone, 1931) by dietary inclusion of a functional yeast cell wall‐based additive. Aquaculture Nutrition. https://doi.org/10.1111/anu.13252

Sha, Y., Liu, M., Wang, B., Jiang, K., Qi, C., & Wang, L. (2016). Bacterial Population in Intestines of Litopenaeus vannamei Fed Different Probiotics or Probiotic Supernatant S. Journal of microbiology and biotechnology, 26(10), 1736-1745. https://www.koreascience.or.kr/article/JAKO201634864494906.page

Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Chowdhury, M. K., Parsaeimehr, A., Liang, Y., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1), 197-213. https://doi.org/10.1007/s10811-017-1234-z

Soñanez-Organis, J. G., Peregrino-Uriarte, A. B., Gómez-Jiménez, S., López-Zavala, A., Forman, H. J., & Yepiz-Plascencia, G. (2009). Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 150(3), 395-405. https://doi.org/10.1016/j.cbpc.2009.06.005

Sudaryono, A., Chilmawati, D., & Susilowati, T. (2018). Oral Administration of Hot‐water Extract of Tropical Brown Seaweed, Sargassum cristaefolium, to Enhance Immune Response, Stress Tolerance, and Resistance of White Shrimp, Litopenaeus vannamei, to Vibrio parahaemolyticus. Journal of the World Aquaculture Society, 49(5), 877-888. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jwas.12527

Sun, Z., Hao, S., Gong, Y., Zhang, M., Aweya, J. J., Tran, N. T., Zhang, Y., Ma, H., & Li, S. (2018). Dual oxidases participate in the regulation of hemolymph microbiota homeostasis in mud crab Scylla paramamosain. Developmental & Comparative Immunology, 89, 111-121. https://doi.org/10.1016/j.dci.2018.08.009

Tepaamorndech, S., Nookaew, I., Higdon, S. M., Santiyanont, P., Phromson, M., Chantarasakha, K., Mhuantong, W., Plengvidhya, V., & Visessanguan, W. (2020). Metagenomics in bioflocs and their effects on gut microbiome and immune responses in Pacific white shrimp. Fish & Shellfish Immunology, 106, 733-741. https://doi.org/10.1016/j.fsi.2020.08.042

Toledo, A., Frizzo, L., Signorini, M., Bossier, P., & Arenal, A. (2019). Impact of probiotics on growth performance and shrimp survival: A meta-analysis. Aquaculture, 500, 196-205. https://doi.org/10.1016/j.aquaculture.2018.10.018

Tseng, I. T., & Chen, J. C. (2004). The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology, 17(4), 325-333. https://doi.org/10.1016/j.fsi.2004.04.010

Valdes Vaillant, Y., Mejías Palmero, J., Corrales Barrios, Y., López Rodríguez, M., Hernández Sariego, T., Arenal Cruz, A., & Bossier, P. (2020). Efecto de prebióticos y probióticos en la expresión y actividad de fenoloxidasa en camarones Penaeus: Meta-análisis. Agrisost, 26(3), 1-16. https://revistas.reduc.edu.cu/index.php/agrisost/article/view/e3279

Valencia-Castañeda, G., Frías-Espericueta, M. G., Vanegas-Pérez, R. C., Pérez-Ramírez, J. A., Chávez-Sánchez, M. C., & Páez-Osuna, F. (2018). Acute toxicity of ammonia, nitrite and nitrate to shrimp Litopenaeus vannamei postlarvae in low-salinity water. Bulletin of environmental contamination and toxicology, 101(2), 229-234. https://doi.org/10.1007/s00128-018-2355-z

Wan, L., Wang, J. Q., Gao, F., Yang, S., & Wang, N. (2006). Bacterial flora in intestines of white leg shrimp (Penaeus vannamei Booen). Fisheries Science, 25(1), 13-15.

Wang, L., Chen, Y., Huang, H., Huang, Z., Chen, H., & Shao, Z. (2015). Isolation and identification of Vibrio campbellii as a bacterial pathogen for luminous vibriosis of Litopenaeus vannamei. Aquaculture Research, 46(2), 395-404. https://doi.org/10.1111/are.12191

Wang, L. U., & Chen, J. C. (2005). The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish & Shellfish Immunology, 18(4), 269-278. https://pubmed.ncbi.nlm.nih.gov/15561558/

Wang, W. N., Wang, A. L., Zhang, Y. J., Li, Z. H., Wang, J. X., & Sun, R. Y. (2004). Effects of nitrite on lethal and immune response of Macrobrachium nipponense. Aquaculture, 232(1-4), 679-686. https://doi.org/10.1016/j.aquaculture.2003.08.018

Wang, Z., Zhou, J., Li, J., Zou, J., & Fan, L. (2020). The immune defense response of Pacific white shrimp (Litopenaeus vannamei) to temperature fluctuation. Fish & shellfish immunology, 103, 103-110. https://doi.org/10.1016/j.fsi.2020.04.053

Xian, J. A., Wang, A. L., Chen, X. D., Gou, N. N., Miao, Y. T., Liao, S. A., & Ye, C. X. (2011). Cytotoxicity of nitrite on haemocytes of the tiger shrimp, Penaeus monodon, using flow cytometric analysis. Aquaculture, 317(1-4), 240-244. https://doi.org/10.1016/j.aquaculture.2011.03.026

Xu, W. J., & Pan, L. Q. (2013). Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412, 117-124. https://doi.org/10.1016/j.aquaculture.2013.07.017

Yuan, K., Yuan, F. H., He, H. H., Bi, H. T., Weng, S. P., He, J. G., & Chen, Y. H. (2017). Heat shock 70 kDa protein cognate 5 involved in WSSV toleration of Litopenaeus vannamei. Developmental & Comparative Immunology, 72, 9-20. https://doi.org/10.1016/j.dci.2017.02.003

Zenteno-Savin, T. (2005). OXIDATIVE STRESS IN RESPONSE TO ENVIRONMENTAL HYPOXIA/REOXYGENATION IN TWO CRUSTACEAN SPECIES, PACIFIC WHITE SHRIMP (LITOPENAEUS VANNAMEI) AND RED CLAW CRAYFISH (CHERAX QUADRICARINATUS): 485. Free Radical Biology and Medicine, 39.

Zenteno-Savín, T., Saldierna, R., & Ahuejote-Sandoval, M. (2006). Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 142(3-4), 301-308. https://doi.org/10.1016/j.cbpc.2005.11.001

Zhang, J. S., Li, Z. J., Wen, G. L., Wang, Y. L., Luo, L., Zhang, H. J., & Dong, H. B. (2016). Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm. Iranian journal of veterinary research, 17(3), 210. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090158/

Zhang, L., Pan, L., Xu, L., & Si, L. (2018). Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei. Fish & shellfish immunology, 75, 48-57. https://doi.org/10.1016/j.fsi.2018.01.046

Zhao, D., Pan, L., Huang, F., Wang, C., & Xu, W. (2016). Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero‐water exchange culture tanks. Journal of the World Aquaculture Society, 47(4), 566-576. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jwas.12292

Zheng, X., Duan, Y., Dong, H., & Zhang, J. (2017). Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish & shellfish immunology, 62, 195-201. https://doi.org/10.1016/j.fsi.2017.01.015

Zokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A., & Nejat, N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish & shellfish immunology, 33(4), 683-689. https://doi.org/10.1016/j.fsi.2012.05.027

Publicado
2022-01-20
Cómo citar
Martín Ríos, L., Corrales Barrios, Y., González Salotén, M., Carrillo Farnés, O., Cabrera Alarcón, H., & Arenal Cruz, A. (2022). Principales factores que modifican el sistema inmune en camarones peneidos estrategias para un cultivo sostenible. Revista De Producción Animal, 34(1). Recuperado a partir de https://revistas.reduc.edu.cu, revistas.reduc.edu.cu/index.php/rpa/article/view/e4037
Sección
Acuicultura

Artículos más leídos del mismo autor/a