Africanización de la abeja melífera (Apis mellifera L.). Revisión de Literatura

Main Article Content

Diego Masaquiza Moposita
https://orcid.org/0000-0001-5176-8261
Lino Miguel Curbelo Rodríguez
https://orcid.org/0000-0003-0453-2357
Amilcar Arenal Cruz
https://orcid.org/0000-0003-2912-9871

Resumen

Contexto: El proceso de hibridación (africanización) de la abeja europea con abejas de origen africanos es un problema para los apicultores del continente americano, por su alta enjambrazón y defensividad, esta última dificulta en buena medida el manejo de las colonias y ha provocado accidentes en el caso de personas y anímales, lo que hace de la apicultura una actividad riesgosa. En este sentido, se ve la necesidad de mejoramiento genético de la abeja melífera para lo cual es esencial la identificación de subespecies.


Objetivo: Evaluar el origen de la abeja mellifera (Apis mellifera), así como el proceso de africanización y dispersión de las abejas africanizadas a través del continente americano y métodos de identificación.


Métodos: Se revisaron las bases de datos de Sciencedirect, Google-Scholar, Scopus y NCBI con el empleo de las palabras claves: Apis mellifera, Apis, abejas africanizadas, morfometría geométrica, ADN mitocondrial. Se enfatizó en los artículos de los últimos cinco años.


Resultados: Se describen el origen y distribución de la abeja melífera, así como el proceso de africanización y dispersión de la abeja africanizada. Además se actualiza sobre la evolución de los métodos de caracterización de subespecies de Apis mellifera.


Conclusiones: La africanización puede considerarse el proceso más importante en la transformación de las características conductuales y morfológicas de la abeja melífera, las que permitieron su rápida dispersión a través del continente americano. Los métodos de identificación tanto vía materna como paterna son esenciales para conocer posibles procesos de erosión genética y para plantear estrategias de conservación y mejoramiento de las abejas a nivel de cada región.

Article Details

Cómo citar
Masaquiza Moposita, D., Curbelo Rodríguez, L., & Arenal Cruz, A. (2020). Africanización de la abeja melífera (Apis mellifera L.). Revisión de Literatura. Agrisost, 26(2), 1-13. Recuperado a partir de https://revistas.reduc.edu.cu/index.php/agrisost/article/view/e3063
Sección
Agrobiodiversidad

Citas

Abizanda, C. (2018). Caracterización morfométrica y molecular de las abejas melíferas en la provincia de Huesca. (Trabajo Fin de Máster), Universidad de Zaragoza, Escuelo Politécnica Superior, España. Recuperado el 12 de marzo de 2019, de: http://zaguan.unizar.es/record/69789/files/TAZ-TFM-2018-063.pdf?version=1
Achou, M., Loucif-Ayad, W., Legout, H., Hmidan, H., Alburaki, M., & Garnery, L. (2015). An insightful molecular analysis reveals foreign honey bees among Algerian honey bee populations (Apis mellifera L.). Data Mining Genomics Proteomics, 6(1), 166, doi: https://doi.org/10.4172/2153-0602.1000166
Adams, D.C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5-16, doi: https://doi.org/10.1080/11250000409356545
Alattal, Y., Alsharhi, M., Alghamdi, A., Alfaify, S., Migdadi, H., & Ansari, M. (2014). Characterization of the native honey bee subspecies in Saudi Arabia using the mtDNA COI-COII intergenic region and morphometric characteristics. Bulletin of Insectology, 67(31-37). Recuperado el 5 de abril de 2019, de: https://pdfs.semanticscholar.org/0222/f2c52f135ab19ce51de8247129de23b6b58b.pdf
Alpatov, W. (1929). Biometrical studies on variation and races of the honey bee (Apis mellifera L.). The Quarterly Review of Biology, 4(1), 1-58, doi: https://doi.org/10.1086/394322
Amakpe, F., De Smet, L., Brunain, M., Frans, J., Sinsin, B., & de Graaf, D. (2018). Characterization of native honey bee subspecies in Republic of Benin using morphometric and genetic tools. J. Apic. Sci., 62(1), 47-59, doi: https://doi.org/10.2478/jas-2018-0006
Branchiccela, B., Aguirre, C., Parra, G., Estay, P., Zunino, P., & Antúnez, K. (2014). Genetic changes in Apis mellifera after 40 years of Africanization. Apidologie, 45(6), 752-756, doi: https://doi.org/10.1007/s13592-014-0293-2
Büchler, R., Costa, C., Hatjina, F., Andonov, S., Meixner, M. D., Le Conte, Y., . . . Wilde, J. (2014). The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. Journal of Apicultural Research, 53(2), 205-214, doi: https://doi.org/10.3896/IBRA.1.53.2.03
Byatt, M. A., Chapman, N. C., Latty, T., & Oldroyd, B. P. (2016). The genetic consequences of the anthropogenic movement of social bees. Insectes Sociaux, 63(1), 15-24, doi: https://doi.org/10.1007/s00040-015-0441-3
Bykova, T. O., Triseleva, T. A., Ivashov, A. V., & Safonkin, A. F. (2016). Morphogenetic Diversity of the Honeybee Apis mellifera L. from the Mountain-Forest Zone of Crimea. Biology Bulletin, 43(6), 541-546, doi: https://doi.org/10.1134/S1062359016060054
Canal, N. A., Hernández-Ortiz, V., Salas, J. O., & Selivon, D. (2015). Morphometric study of third-instar larvae from five morphotypes of the Anastrepha fraterculus cryptic species complex (Diptera, Tephritidae). ZooKeys, (540), 41-59, doi: https://doi.org/10.3897/zookeys.540.6012
Carpana, E. (2004). IL Genere Apis: Evoluzione e Biogeografia. Parte 1. En L'aperegina: allevamento e selezione. (pp. 23-89). Italia: Istituto Nazionale di Apicoltura Bologna
Carvajal, T. M., Hernandez, L. F., Ho, H. T., Cuenca, M. G., Orantia, B. M., Estrada, C. R., . . . Watanabe, K. (2015). Spatial analysis of wing geometry in dengue vector mosquito, Aedesaegypti (L.) (Diptera: Culicidae), populations in Metropolitan Manila, Philippines. J. Vector Borne Dis, 53, 127-135. https://pdfs.semanticscholar.org/4c92/372fb188c7441b3f6f327bd3f4b004aacdc2.pdf?_ga=2.10842674.787354217.1581067777-1193939830.1581067777
Chapman, N. C., Harpur, B. A., Lim, J., Rinderer, T. E., Allsopp, M. H., Zayed, A., & Oldroyd, B. P. (2015). A SNP test to identify Africanized honeybees via proportion of ‘African’ ancestry. Molecular Ecology Resources, 15(6), 1346-1355, doi: https://doi.org/10.1111/1755-0998.12411
Charistos, L., Hatjina, F., Bouga, M., Mladenovic, M., & Maistros, A. D. (2014). Morphological discrimination of Greek honey bee populations based on geometric Morphometrics analysis of wing shape. Journal of Apicultural Science, 58(1), 75-84, doi: https://doi.org/10.2478/jas-2014-0007
Chávez-Galarza, J., Garnery, L., Henriques, D., Neves, C. J., Loucif-Ayad, W., Jonhston, J. S., & Pinto, A. (2017). Mitochondrial DNA variation of Apis mellifera iberiensis: further insights from a large-scale study using sequence data of the tRNAleu-cox2 intergenic region. Apidologie, 48(4), 533-544, doi: 1 https://doi.org/10.1007/s13592-017-0498-2
Chávez-Galarza, J., Henriques, D., Johnston, J. S., Carneiro, M., Rufino, J., Patton, J. C., & Pinto, M. A. (2015, Jun). Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Mol Ecol., 24(12), 2973-92, doi: https://doi.org/10.1111/mec.13223
Combey, R., Quandahor, P., & Mensah, B. A. (2018). Geometric Morphometrics Captures Possible Segregation Occurring within Subspecies Apis Mellifera Adansonii in Three Agro Ecological Zones. Annals of Biological Research, 9(3), 31-43. Recuperado el 23 de maro de 2019, de: https://www.scholarsresearchlibrary.com/articles/geometric-morphometrics-captures-possible-segregation-occurring-within-subspecies-apis-mellifera-adansonii-in-three-agro-ecologica-15155.html
Coroian, C. O., Muñoz, I., Schlüns, E. A., Paniti‐Teleky, O. R., Erler, S., Furdui, E. M., …, Moritz, R. F. A. (2014). Climate rather than geography separates two European honeybee subspecies. Molecular Ecology, 23(9), 2353-2361. doi: https://doi.org/10.1111/mec.12731
Crozier, R., & Crozier, Y. (1993). The mitocondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics, 133, 97-117. Recuperado el 15 de marzo de 2019, de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1205303/pdf/ge133197.pdf
Da Silva, F., Grassi, M., Sella, M., Francoy, T. M., & Reali, A. H. (2015). Evaluating classification and feature selection techniques for honeybee subspecies identification using wing images. Computers and Electronics in Agriculture, 114, 68-77, doi: https://doi.org/10.1016/j.compag.2015.03.012
Daly, H., Hoelmer, K., Norman, P., & Allen, T. (1982). Computer-Assisted Measurement and Identification of Honey Bees (Hymenoptera: Apidae). Annals of the Entomological Society of America, 75(6), 591-594, doi: https://doi.org/10.1093/aesa/75.6.591
Darger, K. (2013). Determining low levels of Africanization in unmanaged honey bee colonies using three diagnostic techniques. (Master of Science in Entomology), University of Delaware, Estados Unidos. http://udspace.udel.edu/bitstream/handle/19716/12667/Katherine_Darger_thesis.pdf?sequence=1&isAllowed=y
De Souza, D. A., Wang, Y., Kaftanoglu, O., De Jong, D., Amdam, G. V., Gonçalves, L. S., & Francoy, T. M. (2015). Morphometric identification of queens, workers and intermediates in in vitro reared honey bees (Apis mellifera). PLoS ONE, 10(4), e0123663, doi: https://doi.org/10.1371/journal.pone.0123663
Dupraw, E. (1965). Non-Linnean taxonomy and the systematics of honeybees. Systematic Zoology, 14(1), 1-24, doi: https://doi.org/10.2307/2411899
Eimanifar, A., Kimball, R., Braun, E. L., & Ellis, J. D. (2018). Mitochondrial genome diversity and population structure of two western honey bee subspecies in the Republic of South Africa. Scientific reports, 8(1), 1333, doi: https://doi.org/10.1038/s41598-018-19759-3
Eimanifar, A., T. Kimball, R., L. Braun, E., & Ellis, J. D. (2016). The complete mitochondrial genome of the hybrid honey bee, Apis mellifera capensis × Apis mellifera scutellata, from South Africa. Mitochondrial DNA Part B, 1(1), 856-857, doi: https://doi.org/10.1080/23802359.2016.1250132
Francoy, T. M., Wittmann, D., Drauschke, M., Müller, S., Steinhage, V., Bezerra-Laure, M. A. F., . . . Gonçalves, L. (2008). Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie, 39(5), 488-494, doi: https://doi.org/10.1051/apido:2008028
Francoy, T., de Faria Franco, F., & Roubik, D. (2012). Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie, 43(6), 609-617, doi: https://doi.org/10.1007/s13592-012-0132-2
Garcia, R., Oliveira, N. T. de, Camargo, S. C., Pires, B., Oliveira, C. de, Teixeira, R., & Pickler, M. (2013). Honey and propolis production, hygiene and defense behaviors of two generations of Africanized honey bees. Scientia Agricola, 70(2), 74-81, https://doi.org/10.1590/S0103-90162013000200003
Garnery, L., Solignac, M., Celebrano, G., & Cornuet, J. (1993). A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia, 49(11), 1016-1021. doi: https://doi.org/10.1007/BF02125651
Genchi, M. L., Reynaldi, F. J., & Bravi, C. M. (2018). An update of Africanization in honey bee (Apis mellifera) populations in Buenos Aires, Argentina. Journal of Apicultural Research, 57(5), 611-614. https://doi.org/10.1080/00218839.2018.1494887
Goetze, G. (1940). Die beste Biene: Züchtungs- und Rassen-Kunde der Honbigbiene nach dem heutigen Stand von Wissenschaft und Praxis. Germany: Leipzig: Liedloff: Loth und Michaelis.
Graciano, L. A. (2018). Niveles de infestación de Varroa destructor (Mesostigmata: Varroidae) en abejas africanizadas (Apis melliferas cutellata). (Tesis Magister en Ciencias: Entomología), Universidad Nacional de Colombia-Medellín, Colombia. Recuperado el 12 de marzo de 2019, de: http://bdigital.unal.edu.co/64945/1/1128406607.2018.pdf
Haddad, N., Adjlane, N., Loucif-Ayad, W., Dash, A., Naganeeswaran, S., Rajashekar, B., ... Sicheritz-Pontén, T. (2017). Mitochondrial genome of the North African Sahara Honeybee, Apis mellifera sahariensis (Hymenoptera: Apidae). Mitochondrial DNA Part B, 2(2), 548-549, doi: https://doi.org/10.1080/23802359.2017.1365647
Hall, M. J. R., MacLeod, N., & Wardhana, A. H. (2014). Use of wing morphometrics to identify populations of the Old World screwworm fly, Chrysomya bezziana (Diptera: Calliphoridae): A preliminary study of the utility of museum specimens. Acta Tropica, 138, S49-S55. doi: https://doi.org/10.1016/j.actatropica.2014.03.023
Hamiduzzaman, M., Guzmán-Novoa, E., Goodwin, P. H., Reyes-Quintana, M., Koleoglu, G., Correa-Benítez, A., & Petukhova, T. (2015). Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism. Journal of invertebrate pathology, 126, 12-20. doi: https://doi.org/10.1016/j.jip.2014.12.004
Harpur, B. A., Kent, C.F., Molodtsova, D., Lebon, J. M. D., Alqarni, A.S., Owayss, A. A., & Zayed, A. (2014). Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proceedings of the National Academy of Sciences, USA, 111, 2614-2619, doi: https://doi.org/10.1073/pnas.1315506111
Henriques, D., Parejo, M., Vignal, A., Wragg, D., Wallberg, A., Webster, M. T., & Pinto, M. A. (2018). Developing reduced SNP assays from whole-genome sequence data to estimate introgression in an organism with complex genetic patterns, the Iberian honeybee (Apis mellifera iberiensis). Evolutionary applications, 11(8), 1270-1282, doi: https://doi.org/10.1111/eva.12623
Hidalgo, M., & Mena, S. (2003). Proyecto de viabilidad de implementación de una granja apícola en la parroquia de Nanegalito. (Tesis de Ingeniería en Ciencias Administrativas Tesis de Ingeniería, inédita), Pontificia Universidad Católica del Ecuador, Quito.
Howell V., Daly, & Balling, S. (1978). Identification of Africanized Honeybees in the Western Hemisphere by Discriminant Analysis. Journal of the Kansas Entomological Society, 51(4): 857-869.
Ivanova, E., Bouga, M., Staykova, T., Mladenovic, M., Rasic, S., Charistos, L.,. . . Petrov, P. (2012). The genetic variability of honey bees from the Southern Balkan Peninsula, based on alloenzymic data. Journal of Apicultural Research, 51(4), 329-335, doi: https://doi.org/10.3896/IBRA.1.51.4.06
Jarnevich, C. S., Esaias, W. E., Ma, P. L. A., Morisette, J. T., Nickeson, J. E., Stohlgren, T. J., . . . Tan, B. (2014). Regional distribution models with lack of proximate predictors: A fricanized honeybees expanding north. Diversity and Distributions, 20(2), 193-201, doi: https://doi.org/10.1111/ddi.12143
Kandemir, İ., Özkan, A., & Fuchs, S. (2011). Reevaluation of honeybee (Apis mellifera) microtaxonomy: a geometric morphometric approach. Apidologie, 42(5), 618, doi: https://doi.org/10.1007/s13592-011-0063-3
Kelomey, A., Paraïso, A. A., Sina, H., Legout, H., Adjanohoun, A., Garnery, L., & Baba-Moussa, L. (2017). Genetic Variability of the Mitochondrial DNA in Honeybees (Apis mellifera L.) from Benin. Journal of Agricultural Science and Technology, 7, 557-566, doi: https://doi.org/10.17265/2161-6256/2017.08.006
Kerr, W. E. (1967). The history of the introduction of African bees in Brazil. South African Bee J., 39: 33-35.
Kono, Y., & Kohn, J. (2015). Range and frequency of africanized honey bees in California (USA). PLoS ONE, 10(9), e0137407, doi: https://doi.org/10.1371/journal.pone.0137407
Magnus, R., & Szalanski, A. L. (2010). Genetic evidence for honey bees (Apis mellifera L.) of Middle Eastern lineage in the United States. Sociobiology, 55(1B), 285-296. Recuperado el 15 de marzo de 2019, de: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.630.4651&rep=rep1&type=pdf
Medina-Flores, C. A., Guzmán-Novoa, E., Hamiduzzaman, M. M., Aguilera Soto, J., Carlos, L., & Marco, A. (2015). Africanización de colonias de abejas melíferas (Apis mellifera) en tres regiones climáticas del norte de México. Veterinaria México OA, 2(4), 1-9. Recuperado el 2 de marzo de 2019, de: https://www.redalyc.org/pdf/4935/493548765001.pdf
Meixner, M. D., Pinto, M. A., Bouga, M., Kryger, P., Ivanova, E., & Fuchs, S. (2013). Standard methods for characterising subspecies and ecotypes of Apis mellifera. Journal of Apicultural Research, 52(4), 1-28, doi: https://doi.org/10.3896/IBRA.1.52.4.05
Mendoza, Y., Antúnez, K., Branchiccela, B., Anido, M., Santos, E., & Invernizzi, C. (2014). Nosemaceranae and RNA viruses in European and Africanized honeybee colonies (Apis mellifera) in Uruguay. Apidologie, 45(2), 224-234, doi: https://doi.org/10.1007/s13592-013-0241-6
Miguel, I., Garnery, L., Iriondo, M., Baylac, M., Manzano, C., Steve, W., & Estonba, A. (2016). Origin, evolution and conservation of the honey bees from La Palma Island (Canary Islands): molecular and morphological data. Journal of Apicultural Research, 54(5), 427-440, doi: https://doi.org/10.1080/00218839.2016.1180017
Moore, P., Wilson, M., & Skinner, J. (2015). Africanized Bees: Better Understanding, Better Prepared. USA: University of Tennessee, Department of Entomology and Plant Pathology, the, Knoxville TN. Recuperado el 16 de febrero de 2019, de: https://bee-health.extension.org/africanized-bees-better-understanding-better-prepared/
Mortensen, A., & Ellis, J. (2015). The frequency of African (Apis mellifera scutellata Lepeletier) matrilineal usurpation of managed European-derived honey bee (A. mellifera L.) colonies in the southeastern United States. Insectes Sociaux, 62(2), 151-155. doi: https://doi.org/10.1007/s00040-014-0383-1
Muñoz, I., Enriques, D., Jara, L., Johnston, J.S., Chávez-Galarza, J., Rua, P. de la, & Pinto, M. (2016). SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera). Mol. Ecol. Res, 17(4), 783-795, doi: https://doi.org/10.1111/1755-0998.12637
Muñoz, I., Henriques, D., Johnston, S., Chávez-Galarza, J., Kryger, P., & Pinto, M. A. (2015). Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis mellifera mellifera). PLoS ONE, 10(4), e0124365, doi: https://doi.org/10.1371/journal.pone.0124365
Muñoz, I., Lodesani, M., Rúa, P. de la, & Dall'Olio, R. (2014). Estimating introgression in Apis mellifera siciliana populations: are the conservation islands really effective? Insect Conserv Divers, 7(6), 563-571, doi: https://doi.org/10.1111/icad.12092
Nogueira-Neto, P. (1972). Notas sobre a história da apicultura brasileira. En J. M. F. De Camargo (ed.), Manual de Apicultura. (pp. 17-32). Sao Paulo, Brasil: Editora Agronomia Ceres.
Nunamaker, R. A., & Wilson, W. T. (1982). Isozyme changes in the honeybee, Apis mellifera L., during larval morphogenesis. Insect Biochemistry, 12(1), 99-104, doi: https://doi.org/10.1016/0020-1790(82)90076-2
Nunes, L. A., Araújo, E. D. de, Marchini, L. C., & Moreti, A. C. de C. C. (2012). Variation morphogeometrics of Africanized honey bees (Apis mellifera) in Brazil. Iheringia. Série Zoologia, 102(3), 321-326, doi: http://dx.doi.org/10.1590/S0073-47212012005000002
Oleksa, A., & Tofilski, A. (2015). Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie, 46(1), 49-60, doi: https://doi.org/10.1007/s13592-014-0300-7
Ostroverkhova, N. V., Konusova, O. L., Kucher, A. N., Kireeva, T. N., Vorotov, A. A., & Belikh, E. A. (2015). Genetic diversity of the locus COI-COII of mitochondrial DNA in honeybee populations (Apis mellifera L.) from the Tomsk region. Russian Journal of Genetics, 51(1), 80-90, doi: https://doi.org/10.1134/S102279541501010X
Oyerinde, A., Salako, E., & Rabiu, M. (2017). Morphometric taxonomy of honeybee races of Apis mellifera L. in Kaduna state. Journal of Entomology and Zoology Studies, 5(5), 825-829. Recuperado el 23 de marzo de 2019, de: http://www.entomoljournal.com/archives/2017/vol5issue5/PartK/4-3-187-692.pdf
Péntek-Zakar, E., Oleksa, A., Borowik, T., & Kusza, S. (2015). Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies Ecology and Evolution, 5(23), 5456-5467, doi: https://doi.org/10.1002/ece3.1781
Pinto, M. A., Henriques, D., Chavez-Galarza, J., Kryger, P., Garnery, L., van der Zee, R.,… Johnston, J. S. (2014). Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. Journal of Apicultural Research, 53(2), 269-278, doi: https://doi.org/10.3896/IBRA.1.53.2.08
Portman, Z. M., Tepedino, V. J., Tripodi, A. D., Szalanski, A. L., & Durham, S. L. (2018). Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biological invasions, 20(3), 593-606, doi: https://doi.org/10.1007/s10530-017-1559-1
Qubaiová, J., Růžička, J., & Šípková, H. (2015). Taxonomic revision of genus Ablattaria Reitter (Coleoptera, Silphidae) using geometric morphometrics. ZooKeys, (477), 79-142, doi: https://doi.org/10.3897/zookeys.477.8446
Rangel, J., Giresi, M., Pinto, M. A., Baum, K. A., Rubink, W. L., Coulson, R. N., & Johnston, J. S. (2016). Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference? Ecology and Evolution, 6(7), 2158-2169, doi: https://doi.org/10.1002/ece3.1974
Rohlf, F. J., & Marcus, L. F. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129-132. doi: https://doi.org/10.1016/0169-5347(93)90024-J
Rortais, A., Arnold, G., Alburaki, M., Legout, H., & Garnery, L. (2011). Review of the DraI COI-COII test for the conservation of the black honeybee (Apis mellifera mellifera). Conserv Genet Resour, 3(2), 383-391, doi: https://doi.org/10.1007/s12686-010-9351-x
Rúa, P. de la, Jaffé, R., Dall'Olio, R., Muñoz, I., & Serrano, J. (2009). Biodiversity, conservation and current threats to European honeybees. Apidologie, 40(3), 263-284, doi: https://doi.org/10.1051/apido/2009027
Rúa, P. de la, Martínez, J., Domingo, O., & Gabaldón, I. (2013). Caracterización molecular de la biodiversidad de la cabaña apícola de la provincia de Albacete. Revista de Estudios Albacetenses, (9), 175-196. Recuperado el 6 de abril de 2019, de: https://dialnet.unirioja.es/descarga/articulo/4252286.pdf
Ruttner, F. (1988). Biogeography and Taxonomy of Honeybees. Springer, Berlin, doi: http://dx.doi.org/10.1007/978-3-642-72649-1
Ruttner, F. (1992). Natural history of honey bees. Munich, Germany: Ehrenwirth Verlag.
Ruttner, F., Tassencourt, L., & Louveaux, J. (1978). Biometrical-statistical analysis of the geographic variability of Apis mellifera L. Material and methods. Apidologie, 9(4), 363-381, doi: https://doi.org/10.1051/apido:19780408
Sanford, M. (2006). Africanized honey bee: A biological revolution with human cultural implications. American Bee Journal. Recuperado el 5 de febrero de 2019, de: http://apisenterprises.com/papers_htm/Misc/AHB%20in%20the%20Americas.htm
Santana, F. S., Costa, A. H., Truzzi, F. S., Silva, F. L., Santos, S. L., Francoy, T. M., & Saraiva, A. M. (2014). A reference process for automating bee species identification based on wing images and digital image processing. Ecological Informatics, 24, 248–260, doi: https://doi.org/10.1016/j.ecoinf.2013.12.001
Sousa, A. R. S., Araújo, E. D., Gramacho, K. P., & Nunes, L. A. (2016). Bee’s morphometrics and behavior in response to seasonal effects from ecoregions. Genetics and Molecular Research, 15(2), 1-14, doi: http://dx.doi.org/10.4238/gmr.150275
Strauss, U., Dietemann, V., Human, H., Crewe, R. M., & Pirk, C. W. (2015). Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor. Parasitology, 143(3), 374-387, doi: https://doi.org/10.1017/S0031182015001754
Su, X., Cai, X., & Huang, D. (2018). Taxonomic Ecology of Geometric Morphometry on Classification and Identification of Sphingid Moths (Lepidoptera: Sphingidae). Ekoloji, 27(106), 827-835. Recuperado el 15 de marzo de 2019, de: http://www.ekolojidergisi.com/download/taxonomic-ecology-of-geometric-morphometry-on-classification-and-identification-of-sphingid-moths-5466.pdf
Sylvester, H. A., & Rinderer, T. E. (1987). Fast Africanized Bee Identification System (FABIS). American BeeJournal, 127(7), 511-516.
Szalanski, A. L., & Magnus, R. M. (2010). Mitochondrial DNA characterization of Africanized honey bee (Apis mellifera L.) populations from the USA. Journal of Apicultural Research, 49(2), 177-185, doi: https://doi.org/10.3896/IBRA.1.49.2.06
Szalanski, A., & Tripodi, A. (2014). Assessing the Utility of a PCR Diagnostics Marker for the Identification of Africanized Honey Bee, Apis mellifera L., (Hymenoptera: Apidae) in the United States. Sociobiology, 61(2), 234-236, doi: http://dx.doi.org/10.13102/sociobiology.v61i2.234-236
Takahashi, J.-i., Wakamiya, T., Kiyoshi, T., Uchiyama, H., Yajima, S., Kimura, K., & Nomura, T. (2016). The complete mitochondrial genome of the Japanese honeybee, Apiscerana japonica (Insecta: Hymenoptera: Apidae). Mitochondrial DNA Part B, 1(1), 156-157, doi: https://doi.org/10.1080/23802359.2016.1144108
Techer, M. A., Clémencet, J., Turpin, P., Volbert, N., Reynaud, B., & Delatte, H. (2015). Genetic characterization of the honeybee (Apis mellifera) population of Rodrigues Island, based on microsatellite and mitochondrial DNA. Apidologie, 46(4), 445-454, doi: https://doi.org/10.1007/s13592-014-0335-9
Techer, M., Clémencet, J., Simiand, C., Preeaduth, S., Azali, H. A., Reynaud, B., & Hélène, D. (2017). Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC genetics, 18(1), 53, doi: https://doi.org/10.1186/s12863-017-0520-8
Tibatá, V. M., Arias, E., Corona, M., Ariza Botero, F., Figueroa-Ramírez, J., & Junca, H. (2018). Determination of the Africanized mitotypes in populations of honey bees (Apis mellifera L.) of Colombia. Journal of Apicultural Research, 57(2), 219-227, doi: https://doi.org/10.1080/00218839.2017.1409065
Torcida, S., & Perez, I. S. (2012). Análisis de Procrustes y el estudio de la variación morfológica. Revista Argentina de Antropología Biológica, 14(1), 131-141. Recuperado el 15 de marzo e 2019, de: https://revistas.unlp.edu.ar/raab/article/view/537
Valido, A., Rodríguez-Rodríguez, M. C., & Jordano, P. (2014). Impacto de la introducción de la abeja doméstica (Apis mellifera, Apidae) en el Parque Nacional del Teide (Tenerife, Islas Canarias). Revista Ecosistemas, 23(3), 58-66, doi: https://doi.org/10.7818/ECOS.2014.23-3.08
Verde, M. M. (2014). Apicultura y seguridad alimentaria. Revista Cubana de Ciencia Agrícola, 48(1), 25-31. Recuperado el 23 de marzo de 2019, de: https://www.redalyc.org/pdf/1930/193030122008.pdf
Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., . . . Rúa, P. de la (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 46(10), 1081-1088, doi: https://doi.org/10.1038/ng.3077
Whitfield, C., Behura, S., Berlocher, S., Clark, A., Johnston, S., Sheppard, W., . . . Tsutsui, N. (2006). Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science, 314(5799), 642-645, doi: https://doi.org/10.1126/science.1132772
Winston, M. (1992). Killer bees. The Africanized honey bee in the Americas. Cambridge, Massachusetts, USA: Harvard University Press.
Wu, M.-C., Lu, T.-H., & Lu, K.-H. (2017). PCR-RFLP of mitochondrial DNA reveals two origins of Apis mellifera in Taiwan. Saudi Journal of Biological Sciences, 24(5), 1069-1074. doi: https://doi.org/10.1016/j.sjbs.2016.12.008
Zelditch, M., Swiderski, D., Sheets, D., & Fink, W. L. (2004). Geometric Morphometrics for Biologists: A Primer: Academic Press.
Zhao, W., Tan, K., Zhou, D., Wang, M., Cheng, C., Yu, Z., . . . He, S. (2014). Phylogeographic analysis of Apiscerana populations on Hainan Island and southern mainland China, based on mitochondrial DNA sequences. Apidologie, 45(1), 21-33, doi: https://doi.org/10.1007/s13592-013-0223-8