El rol del nitrógeno (N) en el crecimiento de las plantas, pigmentos de fotosíntesis y eficiencia del empleo del nitrógeno. Artículo de revisión

Main Article Content

Amin Fathi
https://orcid.org/0000-0002-7539-0053

Resumen

Contexto: Entre los compuestos nutricionales esenciales, el nitrógeno es un elemento vital para el crecimiento y desarrollo de plantas. Este elemento desempeña un rol fundamental en la mayoría de los procesos metabólicos de las plantas.


Objetivo: Realizar una revisión de la literatura relacionada con el rol del nitrógeno en el crecimiento, rendimientos, niveles de pigmentos de clorofila y la eficiencia en el empleo de nitrógeno.


Métodos: EL artículo ofrece una revisión exhaustiva del estatus del nitrógeno en la agricultura. Además, al ser el nitrógeno el elemento más empleado por los agricultores, este estudio investigará los efectos e impacto sobre la eficiencia del empleo del nitrógeno.


Resultados: La deficiencia de N afecta el crecimiento de las plantas, su fotosíntesis y la producción, en última instancia. Sin embargo, el consumo excesivo de N reduce la calidad de los cultivos. Por consiguiente, N es uno de los componentes principales de la estructura de la clorofila de las plantas. El contenido de N y el contenido de clorofila en las plantas están estrechamente relacionados. El contenido de clorofila desempeña un rol crucial para determinar la velocidad de fotosíntesis y producción de las plantas. El contenido de N en las hojas de las plantas aumenta cuando se aplican fertilizantes a base de nitrógeno. Un mayor contenido de N en las hojas está asociado a mayores contenidos de clorofila y el incremento de la actividad del cloroplasto, que conlleva a un aumento en la productividad fotosintética.


Conclusiones: Es posible reducir la contaminación ambiental y elevar la productividad si se comprende mejor los métodos de manejo que aumentan la eficiencia en el empleo de N (NUE).

Descargas

La descarga de datos todavía no está disponible.

Resumen

Contexto: Entre los compuestos nutricionales esenciales, el nitrógeno es un elemento vital para el crecimiento y desarrollo de plantas. Este elemento desempeña un rol fundamental en la mayoría de los procesos metabólicos de las plantas.


Objetivo: Realizar una revisión de la literatura relacionada con el rol del nitrógeno en el crecimiento, rendimientos, niveles de pigmentos de clorofila y la eficiencia en el empleo de nitrógeno.


Métodos: EL artículo ofrece una revisión exhaustiva del estatus del nitrógeno en la agricultura. Además, al ser el nitrógeno el elemento más empleado por los agricultores, este estudio investigará los efectos e impacto sobre la eficiencia del empleo del nitrógeno.


Resultados: La deficiencia de N afecta el crecimiento de las plantas, su fotosíntesis y la producción, en última instancia. Sin embargo, el consumo excesivo de N reduce la calidad de los cultivos. Por consiguiente, N es uno de los componentes principales de la estructura de la clorofila de las plantas. El contenido de N y el contenido de clorofila en las plantas están estrechamente relacionados. El contenido de clorofila desempeña un rol crucial para determinar la velocidad de fotosíntesis y producción de las plantas. El contenido de N en las hojas de las plantas aumenta cuando se aplican fertilizantes a base de nitrógeno. Un mayor contenido de N en las hojas está asociado a mayores contenidos de clorofila y el incremento de la actividad del cloroplasto, que conlleva a un aumento en la productividad fotosintética.


Conclusiones: Es posible reducir la contaminación ambiental y elevar la productividad si se comprende mejor los métodos de manejo que aumentan la eficiencia en el empleo de N (NUE).

Article Details

Cómo citar
Fathi, A. (2022). El rol del nitrógeno (N) en el crecimiento de las plantas, pigmentos de fotosíntesis y eficiencia del empleo del nitrógeno. Artículo de revisión. Agrisost, 28, 1-8. https://doi.org/10.5281/zenodo.7458165
Sección
Sostenibilidad de la producción agropecuaria

Citas

Arvin, P. (2019). Study of Different Levels of Nitrogen, Phosphorus and Potassium on Physiological and Morphological Parameters and Essential Oils in Savory Plant (Satureja hortensis L.). Journal of Plant Research (Iranian Journal of Biology), 32(2), 260–279. https://plant.ijbio.ir/article_1366_0098bb0b9403221d05a3b0b62cb25c88.pdf?lang=en
Barbieri, P.A., Rozas, H.R.S., Andrade, F.H., & Echeverria, H.E. (2000). Row Spacing Effects at Different Levels of Nitrogen Availability in Maize. Agron. J., 92, 283–288. https://doi.org/10.2134/agronj2000.922283x
Bassi, D., Menossi, M., & Mattiello, L. (2018). Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci. Rep., 8(1), 2327. https://doi.org/10.1038/s41598-018-20653-1
Cassman, K.G., Dobermann, A., Walters, D.T., & Yang, H. (2003). Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality. Annual Review of Environment and Resources, 28, 315–358. https://doi.org/10.1146/annurev.energy.28.040202.122858
Chen, Z., Tao, X., Khan, A., Tan, D.K.Y., Luo, H. (2018). Biomass Accumulation, Photosynthetic Traits and Root Development of Cotton as Affected by Irrigation and Nitrogen-Fertilization. Front. Plant. Sci. 9, 173. https://doi.org/10.3389/fpls.2018.00173
Ciampitti, I.A., & Vyn, T.J. (2011). A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research, 121 (1), 2–18. https://doi.org/10.1016/j.fcr.2010.10.009
Davidson, E.A., & Kanter, D. (2014). Inventories and scenarios of nitrous oxide emissions. Environmental Research Letters, 9, 105012. https://iopscience.iop.org/article/10.1088/1748-9326/9/10/105012/pdf
Dehpouri, F., Tari, D.B., & Niknejad, Y., Fallah Amoli, H., & Amiri, E. (2022). Study of nitrogen fertilization management on corn yield and nitrogen use efficiency in the Southern caspian sea region. Rom. Agric. Res., (39).
Ding, L., Gao, C., Li, Y., Li, Y., Zhu, Y., Xu, G., Shen, Q., Kaldenhoff, R., Kai, L., & Guo, S. (2015). The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Sci., 234, 14–21. https://doi.org/10.1016/j.plantsci.2015.01.016
Ding, L., Wang, K.J., Jiang, G.M., Biswas, D. K., Xu, H., Li, L. F., Li, Y. H. (2005). Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Annals of Botanyl, 96, 925–930. https://doi.org/10.1093/aob/mci244
Djaman, K., Mel, V.C., Ametonou, F.Y., El-Namaky R., Diallo, M.D., & Koudahe, K. (2018). Effect of nitrogen fertilizer dose and application timing on yield and nitrogen use efficiency of irrigated hybrid rice under semi-arid conditions. Journal of Agricultural Science and Food Research, 9(2), 2-7. https://www.longdom.org/open-access/effect-of-nitrogen-fertilizer-dose-and-application-timing-on-yield-andnitrogen-use-efficiency-of-irrigated-hybrid-rice-under-semia.pdf
Echarte, L., S., Rothstein, S., & Tollenaar, M. (2008). The Response of Leaf Photosynthesis and Dry Matter Accumulation to Nitrogen Supply in an Older and a Newer Maize Hybrid. Crop. Sci., 48(2), 656–665. https://doi.org/10.2135/cropsci2007.06.0366
Evans, J.R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19. https://doi.org/10.1007/BF00377192,
Fageria, N.K. (2002). Soil quality vs. environmentally-based agricultural management practices. Communications in Soil Science and Plant Analysis, 33(13-14), 2301–2329. https://doi.org/10.1081/CSS-120005764
Fageria, N.K., dos Santos, A.B., de Oliveira, J.P. (2013). Nitrogen-Use Efficiency in Lowland Rice Genotypes under Field Conditions. Commun Soil Sci. Plant Anal, 44(17), 2497–2506. https://doi.org/10.1080/00103624.2013.812732
Fathi, A. (2020). Tillage systems and use of chemical fertilizers (N.P.K) Interaction on soil properties and maize quantitative and qualitative traits. Faculty of Agriculture. Islamic Azad University, Ayatollah Amoli Branch.
Fathi, A., Farnia, A., & Maleki, A. (2013). Effects of Nitrogen and Phosphorous Biofertilizers on Yield and Yield Components of Corn AS71 in Dareh-shahr, Iran. J. Crop Ecophysiol., 7,1(25), 105–114. https://www.sid.ir/paper/182741/en
Fathi, A., Farnia, A., & Maleki, A. (2016). Effects of biological nitrogen and phosphorus fertilizers on vegetative characteristics, dry matter and yield of corn. Appl. F. Crop. Res., 29, 1–7. https://doi.org/10.22092/aj.2016.109214
Fathi, A., & Zeidali, E. (2021). Conservation tillage and nitrogen fertilizer: a review of corn growth, yield and weed management. Cent Asian J Plant Sci. Innov., 1(3), 121–142. https://www.cajpsi.com/article_137559_7f17409644996104fe39b1b433015cfb.pdf
Field, C., Merino, J., & Mooney, H.A. (1983). Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 60, 384–389. https://doi.org/10.1007/BF00376856
Fracheboud, Y., & Leipner, J. (2003). The Application of Chlorophyll Fluorescence to Study Light, Temperature, and Drought Stress. In J.R. DeEll, & P.M.A. Toivonen (eds.), Practical Applications of Chlorophyll Fluorescence in Plant Biology. (pp 125–150) Springer US. https://doi.org/10.1007/978-1-4615-0415-3_4
Gaudin, A.C.M., Janovicek, K., Deen, B., & Hooker D.C. (2015). Wheat improves nitrogen use efficiency of maize and soybean-based cropping systems. Agric. Ecosyst. Environ., 210, 1–10. https://doi.org/10.1016/j.agee.2015.04.034
Ghobadi, R., Ghobadi, M., Honarmand, S.J., Farhadi, B., & Mondani, F. (2018). Study the responses of some leaf physiologic characteristics to different water and nitrogen levels in grainy maize (Zea mays L.). Iran J. F. Crop. Res., 16(3), Fa583-Fa597. https://doi.org/10.22067/gsc.v16i3.68456
Gitelson, A.A., Gritz, † Y., & Merzlyak, M.N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol., 160, 271–282. https://doi.org/10.1078/0176-1617-00887
Good, A.G., Shrawat, A.K., & Muench, D.G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci., 9(12), 597–605. https://doi.org/10.1016/j.tplants.2004.10.008
Goodarzi, F., Delshad, M., Soltani, F., & Mansouri, H. (2020). Changes in some growth and yield indices of Spinach (Spinacia oleracea L.) under nitrogen fertilization and plant density. Iran J. F. Crop Sci., 51(2), 183–198. https://doi.org/10.22059/ijfcs.2019.279354.654601
Guo, J., Jia, Y., Chen, H., Zhang, L., Yang, J., Zhang, J., Hu, X., Ye, X., Li, Y., & Zhou, Y. (2019). Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci. Rep. 9(1), 1248. https://doi.org/10.1038/s41598-018-37838-3
Guo, J.H., Liu, X.J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M., & Zhang, F. S. (2010). Significant Acidification in Major Chinese Croplands. Science (80- ) 327, 1008–1010. https://doi.org/10.1126/science.1182570
Guo, S., Zhou, Y., Shen, Q., & Zhang, F. (2007). Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biol., 9, 21–29. https://doi.org/10.1055/s-2006-924541
Haghjoo, M., & Bahrani, A. (2015). Effect of irrigation and nitrogen fertilizer on grain yield, yield components and dry matter remobilization of maize cv. SC260. Iran J. Crop Sci., 16(4), 278-292. http://agrobreedjournal.ir/article-1-22-en.pdf
Hamilton, H.A., Ivanova, D., Stadler, K., Merciai, S., Schmidt, J., Zelm, R., Moran, D., & Wood, R. (2018). Trade and the role of non-food commodities for global eutrophication. Nat. Sustain, 1, 314–321. https://doi.org/10.1038/s41893-018-0079-z
Hikosaka, K. (2004). Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. J. Plant Res., 117, 481–494. https://doi.org/10.1007/s10265-004-0174-2
Hirose, T., & Bazzaz, F.A. (1998). Trade-off Between Light- and Nitrogen-use Efficiency in Canopy Photosynthesis. Ann Bot., 82, 195–202. https://doi.org/10.1006/anbo.1998.0668
Hosseini, R.S., Galeshi, S., Soltani, A, Kalateh, M., & Zahed, M. (2013). The effect of nitrogen rate on nitrogen use efficiency index in wheat (Triticum aestivum L.) cultivars. Iranian Journal of Field Crops Research, 11(2), 300-306.
Huang, L., Yang, J., Cui, X., Yang, H., Wang, S., & Zhuang, H. (2016). Synergy and Transition of Recovery Efficiency of Nitrogen Fertilizer in Various Rice Genotypes under Organic Farming. Sustainability, 8(9), 854. https://doi.org/10.3390/su8090854
Hurtado, S.M.C., Silva, C.A., Resende, Á.V. de, Corazza, E., Shozo L., & Satoshi, F. (2010). Sensibilidade do clorofilômetro para diagnóstico nutricional de nitrogênio no milho. Ciência e Agrotecnologia, 34(3), 688–697. https://doi.org/10.1590/S1413-70542010000300023
Karami, H., Maleki, A., & Fathi, A. (2018). Determination effect of mycorrhiza and vermicompost on accumulation of seed nutrient elements in maize (Zea mays L.) affected by chemical fertilizer. J. Crop. Nutr. Sci., 4(3), 15–29.
Khan, A., Tan, D.K.Y., Afridi, M.Z., Luo, H., Tung, S. A., Ajab, M., & Fahad, S. (2017). Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ. Sci. Pollut. Res, 24, 14551–14566. https://doi.org/10.1007/s11356-017-8920-x
Kızılgeçİ, F., Yıldırım, M., Akıncı, C, Albayrak, Ö., & Basdemİr, F. (2015). The availability of advanced durum wheat population in yield and quality basis selection. Ziraat Fakültesi Dergisi-Süleyman Demirel Üniversitesi, 10(2), 62–68.
Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A. J. B., &Yang, H. (2010). A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci., 107, 8035–8040. https://doi.org/10.1073/pnas.0913658107
Loss, S.P., & Siddique, K.H.M. (1994). Morphological and Physiological Traits Associated with Wheat Yield Increases in Mediterranean Environments. Advances in Agronomy, 52, 229–276. https://doi.org/10.1016/S0065-2113(08)60625-2
Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data, 9(1), 181–192. https://doi.org/10.5194/essd-9-181-2017
Lu, C., Zhang, J., Cao, P., & Hatfield, J.L. (2019). Are We Getting Better in Using Nitrogen?: Variations in Nitrogen Use Efficiency of Two Cereal Crops Across the United States. Earth’s Futur 7, 939–952. https://doi.org/10.1029/2019EF001155
McAllister, C.H., Beatty, P.H., & Good, A.G. (2012). Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol. J., 10(9), 1011–1025. https://doi.org/10.1111/j.1467-7652.2012.00700.x
Mendoza-Tafolla, R.O., Juarez-Lopez, P., Ontiveros-Capurata, R. E., Sandoval-Villa, M., Iran, A. T., & Alejo-Santiago, G. (2019). Estimating Nitrogen and Chlorophyll Status of Romaine Lettuce Using SPAD and at LEAF Readings. Not. Bot. Horti Agrobot. Cluj-Napoca, 47(3), 751–756. https://doi.org/10.15835/nbha47311525
Mirzaei, A., Naseri, R., Torab Miri, S.M., Fard, A., & Fathi, A. (2018). Reaspose of Yield and Yield Components of Chickpea (Cicer arietinum L.) Cultivars to the Application of Plant Growth Promoting RhizohBacteria and Nitrogen Chemical Fertilizer under Rainfed Conditions. J. Crop. Ecophysiol, 11(4(44) , 775–790.
Moeinirad, A., Zeinali, A., Galeshi, S., Afshin, S., & Eganepour, F. (2021). Investigation of fluorescence chlorophyll sensitivity, chlorophyll index, rate of Chlorophyll (a, b), nitrogen concentration and nitrogen nutrition index under under nitrogen and phosphorus nutrition in wheat. J. Crop Prod 14(1), 1–18. https://doi.org/10.22069/ejcp.2021.12259.1947
Mohan, S., Singh, M., & Kumar, R. (2015). Effect of nitrogen, phosphorus and zinc fertilization on yield and quality of kharif fodder-A review. Agricultural Review, 36(3), 218–226. https://doi.org/10.5958/0976-0741.2015.00025.2
Nasim, W., Ahmad, A., Hammad, H.M., Chaudhary, H.J., & Munis, M.F.H. (2012). Effect of nitrogen on growth and yield of sunflower under semi-arid conditions of Pakistan. Pakistan J. Bot., 44(2), 639–648.
Norton, R., Davidson, E., & Roberts, T. (2015). Nitrogen use efficiency and nutrient performance indicators. Global Partnership on Nutrient Management. http://www.nutrientchallenge.org/sites/default/files/documents/files/NUE%20and%20nutrient%20performance%20indicators_GPNM2015_FINAL.pdf
Olszewski, J., Makowska, M., Pszczółkowska, A., Okorski1, A., & Bieniaszewski, T. (2014). The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat. Plant, Soil Environ, 60(12), 531–536. https://www.agriculturejournals.cz/publicFiles/880_2013-PSE.pdf
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New Phytol, 182(3), 565–588. 10https://doi.org/10.1111/j.1469-8137.2009.02830.x
Qi, H., Wang, J., & Wang, Z. (2013). A comparative study of the sensitivity of F v/F m to phosphorus limitation on four marine algae. Journal of Ocean University of China,12, 77–84. https://doi.org/10.1007/s11802-011-1975-5
Qing, Y., Yanming, L., Kai, X., & Yanhua D. (2002). Effect of different amount of nitrogen on flag leaf senescence and yield components of wheat. J. Hebei Agric. Univ., 25(4), 20–24.
Raun, W.R., & Johnson, G.V. (1999). Improving Nitrogen Use Efficiency for Cereal Production. Agron J. 91, 357–363. https://doi.org/10.2134/agronj1999.00021962009100030001x
Sawyer, J.E., Lundvall, J., Hawkin,s J.S., & Barker, D.W. (2011). Sensing nitrogen stress in corn. Iowa State University. https://store.extension.iastate.edu/Product/Sensing-Nitrogen-Stress-in-Corn-pdf
Schlesinger, W.H. (2009). On the fate of anthropogenic nitrogen. Proc. Natl. Acad. Sci. 106(1), 203–208. https://doi.org/10.1073/pnas.0810193105
Shah, S., Houborg, R., & McCabe, M. (2017). Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy, 7(3), 61. https://doi.org/10.3390/agronomy7030061
Sharma, L., & Bali, S. (2017). A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability, 10(1), 51. https://doi.org/10.3390/su10010051
Shimono, H., & Bunce, J.A. (2009). Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration. Ann Bot, 103(1), 87–94. https://doi.org/10.1093/aob/mcn209
Sutton, M.A., Bleeker, A., Howard, C.M., Bekunda, M., Grizzetti, B., de Vries, W., van Grinsven, H.J.M., Abrol, Y.P., Adhya, T.K., Billen, G., Davidson, E.A., Datta, A., Diaz, R., Erisman, J.W., Liu, X.J., Oenema, O., Palm, C., Raghuram, N., Reis, S., … Zhang, F.S. (2013). Our nutrient world: the challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology Edinburgh, UK, on behalf of the Global Partnership on Nutrient Management and the International. Centre for Ecology & Hydrology. https://edepot.wur.nl/249094
Taheri, F., Maleki, A., & Fathi, A. (2021). Study of different levels of nitrogen fertilizer and irrigation on quantitative and qualitative characteristics of Quinoa grain yield. Crop Physiol. J., 13(50), 135–149.
Valentinuz, O.R., & Tollenaar, M. (2006). Effect of Genotype, Nitrogen, Plant Density, and Row Spacing on the Area‐per‐Leaf Profile in Maize. Agron. J. 98(1), 94–99. https://doi.org/10.2134/agronj2005.0111
Van Meter, K.J., Basu, N.B., & Van Cappellen, P. (2017). Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochem. Cycles, 31(1), 2–23. https://doi.org/10.1002/2016GB005498
Westerveld, S.M., McKeown, A.W., McDonald M.R., & Scott-Dupree, C.D. (2002). Chlorophyll and nitrate meters as nitrogen monitoring tools for selected vegetables in southern Ontario. In XXVI International Horticultural Congress: Toward Ecologically Sound Fertilization Strategies for Field Vegetable Production. 627, (pp 259–266). https://doi.org/10.17660/ActaHortic.2003.627.33
Witcombe, J., Hollington, P., Howarth, C., Reader, S., & Steele, K.A (2008). Breeding for abiotic stresses for sustainable agriculture. Philos Trans. R. Soc. B. Biol. Sci., 363, 703–716. https://doi.org/10.1098/rstb.2007.2179
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Byron B. Lamont, B.B., Lee, T., Lee, W., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. https://doi.org/10.1038/nature02403
Yadav, M.R., Kumar, R., Parihar, C.M., Yadav, R.K., Jat, S.L., Ram, H., Meena, R.K., Singh, M., Birbal, Verma, A. P., Kumar, U., Ghosh, A., & Jat, M.L. (2017). Strategies for improving nitrogen use efficiency: A review. Agric. Rev., 38(1), 29–40. https://doi.org/10.18805/ag.v0iOF.7306
Ying, J., Peng, S., He, Q., Yang, H., Yang, C., R. Visperasa, R. M., & Cassmand, K. G. (1998). Comparison of high-yield rice in tropical and subtropical environments. F. Crop. Res., 57(1), 71–84. https://doi.org/10.1016/S0378-4290(98)00077-X
Zebarth, B.J., & Sheard, R.W. (1992). Influence of rate and timing of nitrogen fertilization on yield and quality of hard red winter wheat in Ontario. Can J. Plant Sci., 72(1), 13–19. https://doi.org/10.4141/cjps92-002
Zebarth, B.J., Younie, M., Paul, J.W., & Bittman, S. (2002). Evaluation of leaf chlorophyll index for making fertilizer nitrogen recommendations for silage corn in a high fertility environment. Commun. Soil Sci. Plant Anal., 33(5-6), 665–684. https://doi.org/10.1081/CSS-120003058
Zhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T. D., Dumas, P. & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528(7580), 51–59. https://doi.org/10.1038/nature15743
Zhang, Y., Wang, J., Gong, S., Xu, D., & Sui, J. (2017). Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat. Agric. Water Manag., 179, 277–287. https://doi.org/10.1016/j.agwat.2016.08.007