La genética molecular en la conservación de los recursos zoogenéticos

  • Ángel Vázquez Gil Facultad de Ciencias Agropecuarias, Universidad de Camagüey Ignacio Agramonte Loynaz, Camagüey, Cuba. https://orcid.org/0000-0002-7457-0626
  • Guillermo E Guevara Viera Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Cuenca, Ecuador. C.P. 010220 https://orcid.org/0000-0003-3832-9090

Resumen

Antecedentes: Los avances en las técnicas de biología molecular, como son el descubrimiento de la Reacción en Cadena de la Polimerasa (PCR) y el empleo de secuencias polimórficas del ADN mitocondrial en la región d-Loop se han utilizado para describir líneas maternas en animales, la mayoría en aves. Objetivo. Realizar una revisión sobre las técnicas de laboratorio aplicadas a genética molecular y su importancia en la conservación de los recursos zoogenéticos.

Desarrollo: Los marcadores moleculares en especial los microsatélites, se hicieron cada vez más útiles, rentables y generalizados a medida que se perfeccionaban los protocolos y la tecnología, los métodos genéticos proporcionan información confiable para contribuir a la conservación de los recursos zoogenéticos de manera especial en circunstancias en las que las orientaciones más tradicionales son inadecuadas.

Conclusiones: El empleo de técnicas moleculares proporciona medidas objetivas de la diversidad entre y dentro de razas, permite estudiar las relaciones genéticas entre ellas, así como evidenciar atributos genéticos únicos o fenómenos de aislamiento genético en el pasado.

Palabras clave: aves, microsatélites, recursos zoogenéticos, secuenciación (Fuente: DeCS)

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguilar Toledo, M. R., & Chicaiza Asimbaya, K. M. (2020). Caracterizar el sistema de tenencia de las gallinas (gallus gallus domesticus) de traspatio en el cantón mejía de la provincia de Pichincha (Bachelor's thesis, Ecuador: Latacunga: Universidad Técnica de Cotopaxi (UTC). http://repositorio.utc.edu.ec/handle/27000/6711

Aranguren-Méndez, J. A., Rincón-Carruyo, X., & Bravo, R. R. (2017). Aplicación de la Genética Molecular en la Producción Animal. Revista Ecuatoriana de Ciencia Animal, 1(1), 1-13. http://revistaecuatorianadecienciaanimal.com/index.php/RECA/article/view/14

Avadanei, E. R., Giusca, S. E., Negura, L., & Caruntu, I. D. (2018). Single nucleotide polymorphisms of XRCC3 gene in hepatocellular carcinoma–relationship with clinicopathological features. Polish Journal of Pathology, 69(1), 73-81. DOI: https://doi.org/10.5114/pjp.2018.75340

Ayala, M., & Carbone, C. (2020). II Jornada de Bienestar Animal, Facultad de Ciencias Veterinarias, UNLP. 13 de septiembre de 2019. Analecta Veterinaria, 45-45.

Bao, H., Zhao, C., Zhang, L., Li, J., & Wu, C. (2008). Single-nucleotide polymorphisms of mitochondrially coded subunit genes of cytochrome c oxidase in five chicken breeds: Full-Length Research Paper. DNA Sequence, 19(5), 461-464. https://doi.org/10.1080/19401730802449212

Bariloche, E. E. A. (2018). Curso de post-grado 2018 Genética Forestal:“Gestión y manejo de los recursos genéticos forestales nativos” (Doctoral dissertation, Universidad Nacional de La Plata).

Berberich, A. J., & Hegele, R. A. (2019). The complex molecular genetics of familial hypercholesterolaemia. Nature reviews Cardiology, 16(1), 9-20. https://www.nature.com/articles/s41569-018-0052-6

Chukwu, S. C., Rafii, M. Y., Ramlee, S. I., Ismail, S. I., Oladosu, Y., Okporie, E., ... & Jalloh, M. (2019). Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnology & Biotechnological Equipment, 33(1), 440-455. https://doi.org/10.1080/13102818.2019.1584054

Chauhan, T., & Rajiv, K. (2010). Molecular markers and their applications in fisheries and aquaculture. Advances in Bioscience and Biotechnology.1:281-291

Colli, L., Lancioni, H., Cardinali, I., Olivieri, A., Capodiferro, M. R., Pellecchia, M., ... & Vahidi, S. M. F. (2015). Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability. BMC genomics, 16(1), 1115. https://link.springer.com/article/10.1186/s12864-015-2342-2

Dancause, K. N., Vilar, M. G., Steffy, R., & Lum, J. K. (2011). Characterizing genetic diversity of contemporary pacific chickens using mitochondrial DNA analyses. PLoS One, 6(2), e16843. https://doi.org/10.1371/journal.pone.0016843

Dhorne-Pollet, S., Barrey, E., & Pollet, N. (2020). A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC genomics, 21(1), 1-15. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-07183-9

Elad, O., Uribe-Diaz, S., Losada-Medina, D., Yitbarek, A., Sharif, S., & Rodriguez-Lecompte, J. C. (2020). Epigenetic effect of folic acid (FA) on the gene proximal promoter area and mRNA expression of chicken B cell as antigen presenting cells. British Poultry Science, 1-9. https://doi.org/10.1080/00071668.2020.1799332

Francesch, Villalba, I., & Cartañà, M. (2011). Methodology for morphological characterization of chicken and its application to compare Penedesenca and Empordanesa breeds. Animal Genetic Resources, 48, 79-84. DOI:10.1017/S2078633610000950

Haile, W. A. (2020). Impact of climate change on animal production and expansion of animal disease: a review on Ethiopia perspective. Am. J. Pure Appl. Sci, 2(3), 64-76. https://doi.org/10.34104/ajpab.020.064076

Islam, M. A., Osman, S. A. M., & Nishibori, M. (2019). Genetic diversity of Bangladeshi native chickens based on complete sequence of mitochondrial DNA D-loop region. British Poultry Science, 60(6), 628-637. https://doi.org/10.1080/00071668.2019.1655708

Islam, M. R., Zhang, Y., Li, Z. Z., Liu, H., Chen, J. M., & Yang, X. Y. (2020). Genetic diversity, population structure, and historical gene flow of Nelumbo lutea in USA using microsatellite markers. Aquatic Botany, 160, 103162. https://doi.org/10.1016/j.aquabot.2019.103162

Jangtarwan, K., Koomgun, T., Prasongmaneerut, T., Thongchum, R., Singchat, W., Tawichasri, P., ... & Baicharoen, S. (2019). Take one step backward to move forward: Assessment of genetic diversity and population structure of captive Asian woolly-necked storks (Ciconia episcopus). PloS one, 14(10), e0223726. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223726

Kinney, N., Titus-Glover, K., Wren, J. D., Varghese, R. T., Michalak, P., Liao, H., ... & Garner, H. R. (2019). CAGm: a repository of germline microsatellite variations in the 1000 genomes project. Nucleic acids research, 47(D1), D39-D45. https://doi.org/10.1093/nar/gky969

Kress, W. J., García-Robledo, C., Uriarte, M., & Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation. Trends in ecology & evolution, 30(1), 25-35. https://doi.org/10.1016/j.tree.2014.10.008

Larsen, P. A., & Matocq, M. D. (2019). Emerging genomic applications in mammalian ecology, evolution, and conservation. Journal of Mammalogy, 100(3), 786-801. https://doi.org/10.1093/jmammal/gyy184

Lawrence, E. R., Benavente, J. N., Matte, J. M., Marin, K., Wells, Z. R., Bernos, T. A., ... & Fraser, D. J. (2019). Geo-referenced population-specific microsatellite data across American continents, the MacroPopGen Database. Scientific data, 6(1), 1-9. https://www.nature.com/articles/s41597-019-0024-7

Li, Q., He, X., Ren, Y., Xiong, C., Jin, X., Peng, L., & Huang, W. (2020). Comparative mitogenome analysis reveals mitochondrial genome differentiation in ectomycorrhizal and asymbiotic Amanita species. Frontiers in Microbiology, 11, 1382. https://doi.org/10.3389/fmicb.2020.01382

Li, Y., Ren, Z., Shedlock, A. M., Wu, J., Sang, L., Tersing, T., ... & Zhong, Y. (2013). High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by the mitochondrial genome analyses. Gene, 517(2), 169-178. https://doi.org/10.1016/j.gene.2012.12.096

Lv, Y., Edwards, H., Zhou, J., & Xu, P. (2019). Combining 26s rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica. ACS synthetic biology, 8(3), 568-576. https://doi.org/10.1021/acssynbio.8b00535

Macrì, M., Martínez, A. M., Landi, V., Canales, A., Arando, A., Delgado, J. V., & Camacho, M. E. (2019). Diversidad genética de la raza gallina utrerana. Actas Iberoamericanas de Conservación Animal AICA, 13, 52-59. https://www.researchgate.net/profile/Martina_Macri/publication/336170786_GENETIC_DIVERSITY_OF_UTRERANA_CHICKEN_BREED/links/5d936b1992851c33e94db849/GENETIC-DIVERSITY-OF-UTRERANA-CHICKEN-BREED.pdf

Malomane, D. K., Simianer, H., Weigend, A., Reimer, C., Schmitt, A. O., & Weigend, S. (2019). The SYNBREED chicken diversity panel: a global resource to assess chicken diversity at high genomic resolution. BMC genomics, 20(1), 345. https://link.springer.com/article/10.1186/s12864-019-5727-9

Mathema, V. B., Dondorp, A. M., & Imwong, M. (2019). OSTRFPD: Multifunctional tool for genome-wide short tandem repeat analysis for DNA, transcripts, and amino acid sequences with integrated primer designer. Evolutionary Bioinformatics, 15. https://doi.org/10.1177/1176934319843130

Meydan, H., Jang, C. P., Yıldız, M. A., & Weigend, S. (2016). Maternal origin of Turkish and Iranian native chickens inferred from mitochondrial DNA D-loop sequences. Asian-Australasian journal of animal sciences, 29(11), 1547. https://misuse.ncbi.nlm.nih.gov/error/abuse.shtml

Miller, J. M., Quinzin, M. C., Scheibe, E. H., Ciofi, C., Villalva, F., Tapia, W., & Caccone, A. (2018). Genetic pedigree analysis of the pilot breeding program for the rediscovered Galapagos giant tortoise from Floreana Island. Journal of Heredity, 109(6), 620-630. https://doi.org/10.1093/jhered/esy010

Morales-González, E., Saura, M., Fernández, A., Fernández, J., Pong-Wong, R., Cabaleiro, S., ... & Villanueva, B. (2020). Evaluating different genomic coancestry matrices for managing genetic variability in turbot. Aquaculture, 520, 734985. https://doi.org/10.1016/j.aquaculture.2020.734985

Nishibori, M., Shimogiri, T., Hayashi, T., & Yasue, H. (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Animal genetics, 36(5), 367-375. https://doi.org/10.1111/j.1365-2052.2005.01318.x

Nomura, Y., Roston, D., Montemayor, E. J., Cui, Q., & Butcher, S. E. (2018). Structural and mechanistic basis for preferential deadenylation of U6 snRNA by Usb1. Nucleic acids research, 46(21), 11488-11501. https://doi.org/10.1093/nar/gky812

Perezgrovas-Garza, R. (2016). Acercamiento a la diversidad de animales domésticos localmente adaptados en las montañas de Chiapas. QueHacer Científico en Chiapas, 11(1), 3-12.

Raza, S. H. A., Khan, R., Abdelnour, S. A., El-Hack, A., Mohamed, E., Khafaga, A. F., ... & Zan, L. (2019). Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Genes, 10(9), 717. https://www.mdpi.com/2073-4425/10/9/717

Razgour, O., Forester, B., Taggart, J. B., Bekaert, M., Juste, J., Ibáñez, C., ... & Manel, S. (2019). Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences, 116(21), 10418-10423. https://doi.org/10.1073/pnas.1820663116

Rodríguez-Osorio, N. (2019). Genómica y bioinformática: sus aplicaciones en salud y producción animal. Revista Colombiana de Ciencias Pecuarias, 32, 14-21. https://revistas.udea.edu.co/index.php/rccp/article/download/340327/20795092

Roh, H. J., Kim, S. C., Cho, C. Y., Lee, J., Jeon, D., Kim, D. K., ... & Batsaikhan, S. (2020). Estimating genetic diversity and population structure of 22 chicken breeds in Asia using microsatellite markers. Asian-Australasian Journal of Animal Sciences. DOI: https://doi.org/10.5713/ajas.19.0958

Roques, S., Chancerel, E., Boury, C., Pierre, M., & Acolas, M. L. (2019). From microsatellites to single nucleotide polymorphisms for the genetic monitoring of a critically endangered sturgeon. Ecology and evolution, 9(12), 7017-7029. https://doi.org/10.5061/dryad.t9v70p3

Sargin, D., Chottekalapanda, R. U., Perit, K. E., Yao, V., Chu, D., Sparks, D. W., ... & Greengard, P. (2020). Mapping the physiological and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons. Molecular psychiatry, 25(5), 1112-1129. https://www.nature.com/articles/s41380-019-0473-6

Serna-Lagunes, R., Clemente-Sánchez, F., Cortez-Romero, C., Becerril-Pérez, C. M., Ramírez-Herrera, C., & Salazar-Ortiz, J. (2015). La filogeografía aplicada en la conservación de fauna silvestre: revisión y resultados. Agroproductividad, 8(5). https://biblat.unam.mx/es/revista/agroproductividad/articulo/la-filogeografia-aplicada-en-la-conservacion-de-fauna-silvestre-revision-y-resultados

Silva, N. C. D., Santos, R. C., Zucca, R., Geisenhoff, L. O., Cesca, R. S., & Lovatto, J. (2020). Enthalpy thematic map interpolated with spline method for management of broiler chicken production. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(7), 431-436. https://www.scielo.br/scielo.php?pid=S141543662020000700431&script=sci_arttext

Sweeney, B. A., Petrov, A. I., Ribas, C. E., Finn, R. D., Bateman, A., Szymanski, M., ... & Gutell, R. R. (2020). RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Research. https://doi.org/10.1093/nar/gkaa921

Tabatabaei, Z., Fard, M. A. F., Hashemi, S. B., & Dianatpour, M. (2020). Identification of novel microsatellite markers flanking GJB2 gene in order to use in preimplantation genetic diagnosis of hearing loss: A comparison of whole-genome amplification and semi-nested PCR. European journal of medical genetics, 63(4), 103796. https://doi.org/10.1016/j.ejmg.2019.103796

Toalombo Vargas, P. A. (2020). Caracterización morfológica, productiva y genética de la gallina criolla del Ecuador. https://helvia.uco.es/handle/10396/19648

Vargas, P. A. T. (2020). Caracterización morfológica, productiva y genética de la gallina criolla del ecuador (Doctoral dissertation, Universidad de Córdoba). https://dialnet.unirioja.es/servlet/tesis?codigo=265106

Wainwright, W., Glenk, K., Akaichi, F., & Moran, D. (2019). Conservation contracts for supplying Farm Animal Genetic Resources (FAnGR) conservation services in Romania. Livestock Science, 224, 1-9. https://doi.org/10.1016/j.livsci.2019.03.016

Wang, J., Li, Y. L., Li, Y., Chen, H. H., Zeng, Y. J., Shen, J. M., & Wang, Y. Y. (2019). Morphology, molecular genetics, and acoustics reveal two new species of the genus Leptobrachella from northwestern Guizhou Province, China (Anura, Megophryidae). ZooKeys, 848, 119. DOI: 10.3897/zookeys.848.29181

Wiśniewska, H., Majka, M., Kwiatek, M., Gawłowska, M., Surma, M., Adamski, T., ... & Belter, J. (2019). Production of wheat-doubled haploids resistant to eyespot supported by marker-assisted selection. Electronic Journal of Biotechnology, 37, 11-17. https://www.sciencedirect.com/science/article/pii/S0717345818300423

World Economic Forum (GAP Report®). (2017). The global gender gap report. Genebra: World Economic Forum. http://hdl.voced.edu.au/10707/349201

Xu, Y., Li, Z., Zhang, S., Zhang, H., & Teng, X. (2020). miR-187-5p/apaf-1 axis was involved in oxidative stress-mediated apoptosis caused by ammonia via mitochondrial pathway in chicken livers. Toxicology and Applied Pharmacology, 388, 114869. https://doi.org/10.1016/j.taap.2019.114869

Yan, L., & Chen, Y. G. (2020). One Ring to Rule Them All: Mitochondrial Circular RNAs Control Mitochondrial Function. Cell, 183(1), 11-13. https://doi.org/10.1016/j.cell.2020.09.028

Yang, M., Abdalrahman, H., Sonia, U., Mohammed, A. I., Vestine, U., Wang, M., ... & Toughani, M. (2020). The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cell Mol Biol (Noisy le Grand), 66(2). DOI: http://dx.doi.org/10.14715/cmb/2020.66.2.3

Yang, S., Huo, Y., Wang, H., Ji, J., Chen, W., & Huang, Y. (2020). The spatio-temporal features of chicken mitochondrial ND2 gene heteroplasmy and the effects of nutrition factors on this gene. Scientific reports, 10(1), 1-9. https://www.nature.com/articles/s41598-020-59703-y

Zinovieva, N. A., Sermyagin, A. A., Dotsev, A. V., Boronetslaya, O. I., Petrikeeva, L. V., Abdelmanova, A. S., & Brem, G. (2019). Animal genetic resources: Developing the research of allele pool of Russian cattle breeds-Minireview. Agric. Biol, 54, 631-641. DOI: 10.15389/agrobiology.2019.4.631eng

Publicado
2021-08-06
Cómo citar
Vázquez Gil, Ángel, & Guevara Viera, G. (2021). La genética molecular en la conservación de los recursos zoogenéticos. Revista De Producción Animal, 33(2). Recuperado a partir de https://revistas.reduc.edu.cu, revistas.reduc.edu.cu/index.php/rpa/article/view/e3878
Sección
Genética y Reproducción

Artículos más leídos del mismo autor/a