Sistema inmune de camarones peneidos de cultivo: Una revisión

Resumen

Introducción: Con el aumento del cultivo intensivo del camarón, y el correspondiente incremento de la incidencia de enfermedades tanto virales como bacterianas, el estudio del sistema inmune es un tema que se le presta cada vez mayor atención en la acuicultura. Actualizar la información sobre los avances en la comprensión del sistema inmune de camarones, haciendo énfasis en camarones peneidos.

Desarrollo: El sistema inmune innato del camarón consta de elementos pasivos y activos, las barreras físicas y las ramas humoral-celular respetivamente. También en los últimos años se incorporó el término de respuesta inmune entrenada como otro elemento clave en la respuesta inmune frente a patógenos. Se destaca el avance en la formalización de clasificaciones de hemocitos en función de parámetros moleculares, el avance en la comprensión de repuesta antiviral a través de ARN de interferencia, la creación de bases de datos de nuevos péptidos antimicrobianos y la evaluación de actividades enzimáticas como moduladores de la respuesta inmune.

Conclusiones: La comprensión de los mecanismos que median la respuesta innata y entrenada, como las citosinas de camarón, permiten el desarrollo de nuevas estrategias para el control de enfermedades en el cultivo del camarón.

 

Palabras claves: Camarón, enfermedades, hemocitos, respuesta inmune (Fuente: MESH)

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguirre Guzman, G., & Ascencio Valle, F. (2000). Infectious disease in shrimp species with aquaculture potential. Recent Research Developments in Microbiology, 333–348. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14574056

Alpuche, J., Pereyra, A., Agundis, C., Rosas, C., Pascual, C., Slomianny, M. C., Vázquez, L., & Zenteno, E. (2005). Purification and characterization of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph. Biochimica et Biophysica Acta (BBA)-General Subjects, 1724(1–2), 86–93. https://doi.org/10.1016/j.bbagen.2005.04.014

Amatul-Samahah, M. A., Omar, W. H. H. W., Ikhsan, N. F. M., Azmai, M. N. A., Zamri-Saad, M., & Ina-Salwany, M. Y. (2020). Vaccination trials against vibriosis in shrimp: A review. Aquaculture Reports, 18, 100471. https://doi.org/10.1016/j.aqrep.2020.100471

Ariki, S., Koori, K., Osaki, T., Motoyama, K., Inamori, K. I., & Kawabata, S. I. (2004). A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. Proceedings of the National Academy of Sciences, 101(4), 953-958. https://doi.org/10.1073/pnas.0306904101

Attasart, P., Kaewkhaw, R., Chimwai, C., Kongphom, U., & Panyim, S. (2011). Clearance of Penaeus monodon densovirus in naturally pre-infected shrimp by combined ns1 and vp dsRNAs. Virus Research, 159(1), 79–82. https://doi.org/10.1016/j.virusres.2011.05.001

Bauchau, A. G. (1981). Cruataceans. Invertabrate Blood Cells, 2, 385–420. https://ci.nii.ac.jp/naid/10019209126/

Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23(7), 781–783. http://genesdev.cshlp.org/content/23/7/781.short

Bouallegui, Y. (2021). A Comprehensive Review on Crustaceans’ Immune System With a Focus on Freshwater Crayfish in Relation to Crayfish Plague Disease. Frontiers in Immunology, 12, 1753. https://doi.org/10.3389/fimmu.2021.667787

Brown, K. L., & Hancock, R. E. (2006). Cationic host defense (antimicrobial) peptides. Current opinion in immunology, 18(1), 24-30. https://doi.org/10.1016/j.coi.2005.11.004

Burge, E. J., Madigan, D. J., Burnett, L. E., & Burnett, K. G. (2007). Lysozyme gene expression by hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with Vibrio. Fish & Shellfish Immunology, 22(4), 327–339. https://doi.org/10.1016/j.fsi.2006.06.004

Campa-Córdova, A. I., Hernández-Saavedra, N. Y., Aguirre-Guzmán, G., & Ascencio, F. (2005). Respuesta inmunomoduladora de la superóxido dismutasa en juveniles de camarón blanco (Litopenaeus vannamei) expuestos a inmunoestimulantes. Ciencias Marinas, 31(4), 661–669. http://www.scielo.org.mx/scielo.php?pid=S0185-38802005000500006&script=sci_arttext

Castex, M., Lemaire, P., Wabete, N., & Chim, L. (2009). Effect of dietary probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress status of shrimp Litopenaeus stylirostris. Aquaculture, 294(3–4), 306–313. https://doi.org/10.1016/j.aquaculture.2009.06.016

Cerenius, L., & Söderhäll, K. (2004). The prophenoloxidase‐activating system in invertebrates. Immunological Reviews, 198(1), 116–126. https://doi.org/10.1111/j.0105-2896.2004.00116.x

Chang, C. C., Chang, H. C., Liu, K. F., & Cheng, W. (2016). The known two types of transglutaminases regulate immune and stress responses in white shrimp, Litopenaeus vannamei. Developmental & Comparative Immunology, 59, 164–176. https://doi.org/10.1016/j.dci.2016.02.003

Charoensapsri, W., Amparyup, P., Hirono, I., Aoki, T., & Tassanakajon, A. (2009). Gene silencing of a prophenoloxidase activating enzyme in the shrimp, Penaeus monodon, increases susceptibility to Vibrio harveyi infection. Developmental & Comparative Immunology, 33(7), 811–820. https://doi.org/10.1016/j.dci.2009.01.006

Chen, Q., & Kang, C. (2021). Advancements in the study of the classification and immune function of shrimp hemocytes. Sheng Wu Gong Cheng Xue Bao= Chinese Journal of Biotechnology, 37(1), 53–66. https://europepmc.org/article/med/33501789

Chen, Y. H., Jia, X. T., Zhao, L., Li, C. Z., Zhang, S., Chen, Y. G., Weng, S. P., & He, J. G. (2011). Identification and functional characterization of Dicer2 and five single VWC domain proteins of Litopenaeus vannamei. Developmental & Comparative Immunology, 35(6), 661–671. https://doi.org/10.1016/j.dci.2011.01.010

Cuthbertson, B. J., Deterding, L. J., Williams, J. G., Tomer, K. B., Etienne, K., Blackshear, P. J., Büllesbach, E. E., & Gross, P. S. (2008). Diversity in penaeidin antimicrobial peptide form and function. Developmental & Comparative Immunology, 32(3), 167–181. https://doi.org/10.1016/j.dci.2007.06.009

De-La-Re-Vega, E., García-Galaz, A., Díaz-Cinco, M. E., & Sotelo-Mundo, R. R. (2006). White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae. Fish & Shellfish Immunology, 20(3), 405–408. https://doi.org/10.1016/j.fsi.2005.06.005

De Gryse, G. M., Van Khuong, T., Descamps, B., Van Den Broeck, W., Vanhove, C., Cornillie, P., Sorgrloos, P., Bossier, P., & Nauwynck, H. J. (2020). The shrimp nephrocomplex serves as a major portal of pathogen entry and is involved in the molting process. Proceedings of the National Academy of Sciences, 117(45), 28374-28383. https://doi.org/10.1073/pnas.2013518117

Deachamag, P., Intaraphad, U., Phongdara, A., & Chotigeat, W. (2006). Expression of a Phagocytosis Activating Protein (PAP) gene in immunized black tiger shrimp. Aquaculture, 255(1–4), 165–172. https://doi.org/10.1016/j.aquaculture.2006.01.010

Dhinaut, J., Chogne, M., & Moret, Y. (2018). Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. Journal of Animal Ecology, 87(2), 448–463. https://doi.org/10.1111/1365-2656.12661

FAO. (2018). The State of World Fisheries and Aquaculture 2018—Meeting the sustainable development goals. Rome. Licence: CC BY‐NC‐SA 3.0 IGO.

Flegel, T. W. (2019). A future vision for disease control in shrimp aquaculture. Journal of the World Aquaculture Society, 50(2), 249–266. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jwas.12589

García-García, E., García-García, P. L., & Rosales, C. (2009). An fMLP receptor is involved in activation of phagocytosis by hemocytes from specific insect species. Developmental & Comparative Immunology, 33(6), 728–739. https://doi.org/10.1016/j.dci.2008.12.006

Gollas-Galván, T., Sotelo-Mundo, R. R., Yepiz-Plascencia, G., Vargas-Requena, C., & Vargas-Albores, F. (2003). Purification and characterization of α2-macroglobulin from the white shrimp (Penaeus vannamei). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 134(4), 431–438. https://doi.org/10.1016/j.dci.2008.12.006

Guanzon, D. A. V, & Maningas, M. B. B. (2018). Functional elucidation of LvToll 3 receptor from P. vannamei through RNA interference and its potential role in the shrimp antiviral response. Developmental & Comparative Immunology, 84, 172–180. https://doi.org/10.1016/j.dci.2018.01.020

Gueguen, Y., Garnier, J., Robert, L., Lefranc, M. P., Mougenot, I., De Lorgeril, J., Janech, M., Gross, P. S., Warr, G. W., Cuthbertson, B., Barracco, M. A., Bulet, P., Aumelas, A., Yang, Y., Bo, D., Xiang, J., Tassanakajon, A., Piquemal, D., & Bachere, E. (2006). PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. Developmental & Comparative Immunology, 30(3), 283-288. https://doi.org/10.1016/j.dci.2005.04.003

Hancock, R. E. W., Brown, K. L., & Mookherjee, N. (2006). Host defence peptides from invertebrates–emerging antimicrobial strategies. Immunobiology, 211(4), 315–322. https://doi.org/10.1016/j.imbio.2005.10.017

He, Y., Ju, C., & Zhang, X. (2015). Roles of small RNAs in the immune defense mechanisms of crustaceans. Molecular Immunology, 68(2), 399–403. https://doi.org/10.1016/j.molimm.2015.07.008

Hikima, S., Hikima, J. I., Rojtinnakorn, J., Hirono, I., & Aoki, T. (2003). Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene, 316, 187-195. https://doi.org/10.1016/S0378-1119(03)00761-3

Ho, P. Y., Cheng, C. H., & Cheng, W. (2009). Identification and cloning of the α2-macroglobulin of giant freshwater prawn Macrobrachium rosenbergii and its expression in relation with the molt stage and bacteria injection. Fish & Shellfish Immunology, 26(3), 459–466. https://doi.org/10.1016/j.fsi.2009.01.007

Ho, T., Yasri, P., Panyim, S., & Udomkit, A. (2011). Double-stranded RNA confers both preventive and therapeutic effects against Penaeus stylirostris densovirus (PstDNV) in Litopenaeus vannamei. Virus Research, 155(1), 131–136. https://doi.org/10.1016/j.virusres.2010.09.009

Hose, J. E., Martin, G. G., Nguyen, V. A., Lucas, J., & Rosenstein, T. (1987). Cytochemical features of shrimp hemocytes. The Biological Bulletin, 173(1), 178–187. https://www.journals.uchicago.edu/doi/abs/10.2307/1541871

Hou, F., Liu, Y., He, S., Wang, X., Mao, A., Liu, Z., Sun, C., & Liu, X. (2015). A galectin from shrimp Litopenaeus vannamei is involved in immune recognition and bacteria phagocytosis. Fish & Shellfish Immunology, 44(2), 584–591. https://doi.org/10.1016/j.fsi.2015.03.017

Iwanaga, S., & Lee, B. L. (2005). Recent advances in the innate immunity of invertebrate animals. BMB Reports, 38(2), 128–150. https://doi.org/10.5483/BMBRep.2005.38.2.128

Jeyachandran, S., Park, K., Kwak, I. S., & Baskaralingam, V. (2020). Morphological and functional characterization of circulating hemocytes using microscopy techniques. Microscopy research and technique, 83(7), 736-743. https://doi.org/10.1002/jemt.23463

Jiang, H. S., Zhang, Q., Zhao, Y. R., Jia, W. M., Zhao, X. F., & Wang, J. X. (2015). A new group of anti-lipopolysaccharide factors from Marsupenaeus japonicus functions in antibacterial response. Developmental & Comparative Immunology, 48(1), 33–42. https://doi.org/10.1016/j.dci.2014.09.001

Jiravanichpaisal, P., Lee, B. L., & Söderhäll, K. (2006). Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology, 211(4), 213–236. https://doi.org/10.1016/j.imbio.2005.10.015

Kanost, M. R., Jiang, H., & Yu, X. Q. (2004). Innate immune responses of a lepidopteran insect, Manduca sexta. Immunological reviews, 198(1), 97-105. https://doi.org/10.1111/j.0105-2896.2004.0121.x

Koiwai, K., Koyama, T., Tsuda, S., Toyoda, A., Kikuchi, K., Suzuki, H., & Kawano, R. (2021). Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process. Elife, 10, e66954. https://elifesciences.org/articles/66954

Kulkarni, A., Krishnan, S., Anand, D., Kokkattunivarthil Uthaman, S., Otta, S. K., Karunasagar, I., & Kooloth Valappil, R. (2021). Immune responses and immunoprotection in crustaceans with special reference to shrimp. Reviews in Aquaculture, 13(1), 431–459. https://doi.org/10.1111/raq.12482

Labreuche, Y., Veloso, A., De La Vega, E., Gross, P. S., Chapman, R. W., Browdy, C. L., & Warr, G. W. (2010). Non-specific activation of antiviral immunity and induction of RNA interference may engage the same pathway in the Pacific white leg shrimp Litopenaeus vannamei. Developmental & Comparative Immunology, 34(11), 1209–1218. https://doi.org/10.1016/j.dci.2010.06.017

Lamela, R. E. L., Silveira Coffigny, R., Quintana, Y. C., & Martínez, M. (2005). Phenoloxidase and peroxidase activity in the shrimp Litopenaeus schmitti, Pérez‐Farfante and Kensley (1997) exposed to low salinity. Aquaculture Research, 36(13), 1293–1297. https://doi.org/10.1111/j.1365-2109.2005.01344.x

Lee, S. Y., & Söderhäll, K. (2002). Early events in crustacean innate immunity. Fish & Shellfish Immunology, 12(5), 421–437. https://doi.org/10.1006/fsim.2002.0420

Li, D. F., Zhang, M. C., Yang, H. J., Zhu, Y. B., & Xu, X. (2007). β-integrin mediates WSSV infection. Virology, 368(1), 122–132. https://doi.org/10.1016/j.virol.2007.06.027

Li, D., Wan, Z., Li, X., Duan, M., Yang, L., Ruan, Z., Wang, Q., & Li, W. (2019). Alternatively spliced down syndrome cell adhesion molecule (Dscam) controls innate immunity in crab. Journal of Biological Chemistry, 294(44), 16440–16450. https://doi.org/10.1074/jbc.RA119.010247

Li, F., Chang, X., Xu, L., & Yang, F. (2018). Different roles of crayfish hemocytes in the uptake of foreign particles. Fish & shellfish immunology, 77, 112-119. https://doi.org/10.1016/j.fsi.2018.03.029

Li, F., & Xiang, J. (2013). Signaling pathways regulating innate immune responses in shrimp. Fish & shellfish immunology, 34(4), 973-980. https://doi.org/10.1016/j.fsi.2012.08.023

Li, H., Chen, Y., Li, M., Wang, S., Zuo, H., Xu, X., Weng, S., He, J., & Li, C. (2015). A C-type lectin (LvCTL4) from Litopenaeus vannamei is a downstream molecule of the NF-κB signaling pathway and participates in antibacterial immune response. Fish & Shellfish Immunology, 43(1), 257–263. https://doi.org/10.1016/j.fsi.2014.12.024

Li, L., Wang, J.-X., Zhao, X.-F., Kang, C.-J., Liu, N., Xiang, J.-H., Li, F.-H., Sueda, S., & Kondo, H. (2005). High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expression and Purification, 39(2), 144–151. https://doi.org/10.1016/j.pep.2004.09.006

Li, W., & Wang, Q. (2020). Recent progress in the research of exosomes and Dscam regulated crab antiviral immunity. Developmental & Comparative Immunology, 103925. https://doi.org/10.1016/j.dci.2020.103925

Li, W., Tang, X., Chen, Y., Sun, W., Liu, Y., Gong, Y., Wen, X., & Li, S. (2017). Characterize a typically Dscam with alternative splicing in mud crab Scylla paramamosain. Fish & Shellfish Immunology, 71, 305–318. https://doi.org/10.1016/j.fsi.2017.10.023

Liang, Q., Zheng, J., Zuo, H., Li, C., Niu, S., Yang, L., Yan, M., Weng, S.-P., He, J., & Xu, X. (2017). Identification and characterization of an interleukin-16-like gene from pacific white shrimp Litopenaeus vannamei. Developmental & Comparative Immunology, 74, 49–59. https://doi.org/10.1016/j.dci.2017.04.011

Lin, Y. C., Vaseeharan, B., Ko, C. F., Chiou, T. T., & Chen, J. C. (2007). Molecular cloning and characterisation of a proteinase inhibitor, alpha 2-macroglobulin (α2-M) from the haemocytes of tiger shrimp Penaeus monodon. Molecular Immunology, 44(6), 1065–1074. https://doi.org/10.1016/j.molimm.2006.08.002

Little, T. J., O’Connor, B., Colegrave, N., Watt, K., & Read, A. F. (2003). Maternal transfer of strain-specific immunity in an invertebrate. Current Biology, 13(6), 489–492. https://doi.org/10.1016/S0960-9822(03)00163-5

Liu, C. H., & Chen, J. C. (2004). Effect of ammonia on the immune response of white shrimpLitopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish & Shellfish Immunology, 16(3), 321–334. https://doi.org/10.1016/S1050-4648(03)00113-X

Liu, C. H., Cheng, W., & Chen, J. C. (2005). The peroxinectin of white shrimp Litopenaeus vannamei is synthesised in the semi-granular and granular cells, and its transcription is up-regulated with Vibrio alginolyticus infection. Fish & Shellfish Immunology, 18(5), 431–444. https://doi.org/10.1016/j.fsi.2004.10.005

Liu, C., Li, F., Sun, Y., Zhang, X., Yuan, J., Yang, H., & Xiang, J. (2016). Virus-derived small RNAs in the penaeid shrimp Fenneropenaeus chinensis during acute infection of the DNA virus WSSV. Scientific reports, 6(1), 1-15. https://doi.org/10.1038/srep28678

Liu, C., Wang, J., & Zhang, X. (2014). The involvement of MiR-1-clathrin pathway in the regulation of phagocytosis. PLoS One, 9(6), e98747. https://doi.org/10.1371/journal.pone.0098747

Liu, H., Pizzano, S., Li, R., Zhao, W., Veling, M. W., Hu, Y., Yang, L., & Ye, B. (2020). isoTarget: a genetic method for analyzing the functional diversity of splicing isoforms in vivo. Cell Reports, 33(6), 108361. https://doi.org/10.1016/j.celrep.2020.108361

Liu, S., Zheng, S. C., Li, Y. L., Li, J., & Liu, H. P. (2020). Hemocyte-mediated phagocytosis in crustaceans. Frontiers in Immunology, 11, 268. https://doi.org/10.3389/fimmu.2020.00268

Low, C. F., & Chong, C. M. (2020). Peculiarities of innate immune memory in crustaceans. Fish & Shellfish Immunology. 104, 605-612. https://doi.org/10.1016/j.fsi.2020.06.047

Loy, J. D., Mogler, M. A., Loy, D. S., Janke, B., Kamrud, K., Scura, E. D., Harris, D. L. H., & Bartholomay, L. C. (2012). dsRNA provides sequence-dependent protection against infectious myonecrosis virus in Litopenaeus vannamei. Journal of General Virology, 93(4), 880–888. https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.038653-0?crawler=true

Luo, M., Yang, L., Wang, Z., Zuo, H., Weng, S., He, J., & Xu, X. (2019). A novel C-type lectin with microbiostatic and immune regulatory functions from Litopenaeus vannamei. Fish & Shellfish Immunology, 93, 361–368. https://doi.org/10.1016/j.fsi.2019.07.047

Maningas, M. B. B., Koyama, T., Kondo, H., Hirono, I., & Aoki, T. (2008). A peroxiredoxin from kuruma shrimp, Marsupenaeus japonicus, inhibited by peptidoglycan. Developmental & Comparative Immunology, 32(3), 198–203. https://doi.org/10.1016/j.dci.2007.07.004

Masri, M., Sukmawaty, E., & Aditia, L. (2021). Novel chitinolytic bacteria from the shrimp shell processing waste. Biodiversitas Journal of Biological Diversity, 22(5). https://doi.org/10.13057/biodiv/d220527

Matsuda, M., Yamori, T., Naitoh, M., & Okutani, K. (2003). Structural revision of sulfated polysaccharide B-1 isolated from a marine Pseudomonas species and its cytotoxic activity against human cancer cell lines. Marine Biotechnology, 5(1), 13–19. https://doi.org/10.1007/s10126-002-0046-5

Mekata, T., Sudhakaran, R., Okugawa, S., Inada, M., Kono, T., Sakai, M., & Itami, T. (2010). A novel gene of tumor necrosis factor ligand superfamily from kuruma shrimp, Marsupenaeus japonicus. Fish & Shellfish Immunology, 28(4), 571–578. https://doi.org/10.1016/j.fsi.2009.12.020

Millard, R. S., Ellis, R. P., Bateman, K. S., Bickley, L. K., Tyler, C. R., van Aerle, R., & Santos, E. M. (2020). How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. Journal of Invertebrate Pathology, 107369. https://doi.org/10.1016/j.jip.2020.107369

Muñoz, M., Cedeño, R., Rodrı́guez, J., van der Knaap, W. P. W., Mialhe, E., & Bachère, E. (2000). Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture, 191(1–3), 89–107. https://doi.org/10.1016/S0044-8486(00)00420-8

Muñoz, M., Vandenbulcke, F., Saulnier, D., & Bachère, E. (2002). Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. European Journal of Biochemistry, 269(11), 2678–2689. https://doi.org/10.1046/j.1432-1033.2002.02934.x

Mydlarz, L. D., Jones, L. E., & Harvell, C. D. (2006). Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. Annu. Rev. Ecol. Evol. Syst., 37, 251–288. https://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.37.091305.110103

Nappi, A. J., & Ottaviani, E. (2000). Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays, 22(5), 469–480. https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<469::AID-BIES9>3.0.CO;2-4

Ng, T. H., & Kurtz, J. (2020). Dscam in immunity: a question of diversity in insects and crustaceans. Developmental & Comparative Immunology, 105, 103539. https://doi.org/10.1016/j.dci.2019.103539

Norouzitallab, P., Baruah, K., Biswas, P., Vanrompay, D., & Bossier, P. (2016). Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system. Scientific Reports, 6(1), 1–14. https://doi.org/10.1038/srep21166

Norouzitallab, P., Baruah, K., Muthappa, D. M., & Bossier, P. (2015). Non-lethal heat shock induces HSP70 and HMGB1 protein production sequentially to protect Artemia franciscana against Vibrio campbellii. Fish Shellfish Immunol, 42(2), 395–399. http://dx.doi.org/10.1016/j.fsi.2014.11.017

Pauwels, A. M., Trost, M., Beyaert, R., & Hoffmann, E. (2017). Patterns, receptors, and signals: regulation of phagosome maturation. Trends in Immunology, 38(6), 407–422. https://doi.org/10.1016/j.it.2017.03.006

Peters, W. (2012). Peritrophic membranes (Vol. 30). Springer Science & Business Media.

Ponprateep, S., Somboonwiwat, K., & Tassanakajon, A. (2009). Recombinant anti-lipopolysaccharide factor isoform 3 and the prevention of vibriosis in the black tiger shrimp, Penaeus monodon. Aquaculture, 289(3–4), 219–224. https://doi.org/10.1016/j.aquaculture.2009.01.026

Rattanachai, A., Hirono, I., Ohira, T., Takahashi, Y., & Aoki, T. (2004). Molecular cloning and expression analysis of α2-macroglobulin in the kuruma shrimp, Marsupenaeus japonicus. Fish & Shellfish Immunology, 16(5), 599–611. https://doi.org/10.1016/j.fsi.2003.09.011

Rendón, L., & Balcázar, J. L. (2016). Inmunología de camarones: Conceptos básicos y recientes avances. Revista AquaTIC, 19. http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/256

Robalino, J., Bartlett, T., Shepard, E., Prior, S., Jaramillo, G., Scura, E., Chapman, R. W., Gross, P. S., Browdy, C. L., & Warr, G. W. (2005). Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? Journal of Virology, 79(21), 13561–13571. https://doi.org/10.1128/JVI.79.21.13561-13571.2005

Roch, P. (1999). Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture, 172(1–2), 125–145. https://doi.org/10.1016/S0044-8486(98)00439-6

Rodrıguez, J., & Le Moullac, G. (2000). State of the art of immunological tools and health control of penaeid shrimp. Aquaculture, 191(1–3), 109–119. https://doi.org/10.1016/S0044-8486(00)00421-X

Rolland, J. L., Abdelouahab, M., Dupont, J., Lefevre, F., Bachère, E., & Romestand, B. (2010). Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. Molecular Immunology, 47(6), 1269–1277. https://doi.org/10.1016/j.molimm.2009.12.007

Roy, S., Bossier, P., Norouzitallab, P., & Vanrompay, D. (2020). Trained immunity and perspectives for shrimp aquaculture. Reviews in Aquaculture, 12(4), 2351–2370. https://doi.org/10.1111/raq.12438

Roy, S., Kumar, V., Bossier, P., Norouzitallab, P., & Vanrompay, D. (2019). Phloroglucinol treatment induces transgenerational epigenetic inherited resistance against Vibrio infections and thermal stress in a brine shrimp (Artemia franciscana) model. Frontiers in Immunology, 10, 2745. https://doi.org/10.3389/fimmu.2019.02745

Sahoo, P. K., Pillai, B. R., Mohanty, J., Kumari, J., Mohanty, S., & Mishra, B. K. (2007). Differential affinity of natural haemagglutinin of Macrobrachium rosenbergii towards vertebrate erythrocytes: Effect of sex, size and moult stage on haemagglutination titre. http://nopr.niscair.res.in/handle/123456789/5324

Sánchez‐Salgado, J. L., Pereyra, M. A., Agundis, C., Vivanco‐Rojas, O., Sierra‐Castillo, C., Alpuche‐Osorno, J. J., & Zenteno, E. (2017). Participation of lectins in crustacean immune system. Aquaculture Research, 48(8), 4001–4011. https://doi.org/10.1111/are.13394

Shimizu, N., Hosogi, N., Hyon, G.-S., Jiang, S., Inoue, K., & Park, P. (2006). Reactive oxygen species (ROS) generation and ROS-induced lipid peroxidation are associated with plasma membrane modifications in host cells in response to AK-toxin I from Alternaria alternata Japanese pear pathotype. Journal of General Plant Pathology, 72(1), 6–15. https://doi.org/10.1007/s10327-005-0245-9

Smith, V. J., Brown, J. H., & Hauton, C. (2003). Immunostimulation in crustaceans: does it really protect against infection? Fish & Shellfish Immunology, 15(1), 71–90. https://doi.org/10.1016/S1050-4648(02)00140-7

Smith, V. J., Fernandes, J. M. O., Kemp, G. D., & Hauton, C. (2008). Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans. Developmental & Comparative Immunology, 32(7), 758–772. https://doi.org/10.1016/j.dci.2007.12.002

Söderhäll, K., & Smith, V. J. (1983). Separation of the haemocyte populations of Carcinusmaenas and other marine decapods, and prophenoloxidase distribution. Developmental & Comparative Immunology, 7(2), 229–239. https://doi.org/10.1016/0145-305X(83)90004-6

Song, K. K., Li, D. F., Zhang, M. C., Yang, H. J., Ruan, L. W., & Xu, X. (2010). Cloning and characterization of three novel WSSV recognizing lectins from shrimp Marsupenaeus japonicus. Fish & Shellfish Immunology, 28(4), 596–603. https://doi.org/10.1016/j.fsi.2009.12.015

Soponpong, S., Amparyup, P., Kawai, T., & Tassanakajon, A. (2019). A cytosolic sensor, PmDDX41, binds double stranded-DNA and triggers the activation of an innate antiviral response in the shrimp Penaeus monodon via the STING-dependent signaling pathway. Frontiers in Immunology, 10, 2069. https://www.frontiersin.org/articles/10.3389/fimmu.2019.02069/full

Soponpong, S., Amparyup, P., & Tassanakajon, A. (2018). A cytosolic sensor, PmDDX41, mediates antiviral immune response in black tiger shrimp Penaeus monodon. Developmental & Comparative Immunology, 81, 291–302. https://doi.org/10.1016/j.dci.2017.12.013

Soria, F., Sierra, C., Bouquelet, S., Brassart, C., Agundis, C., Zenteno, E., & Vázquez, L. (2006). The effect of sugars and free amino acids from the freshwater prawn Macrobrachium rosenbergii hemolymph on lectin activity and on oxidative burst. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 142(3–4), 212–219. https://doi.org/10.1016/j.cbpc.2005.10.003

Sotelo-Mundo, R. R., Islas-Osuna, M. A., De-la-Re-Vega, E., Hernández-López, J., Vargas-Albores, F., & Yepiz-Plascencia, G. (2003). cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei. Fish & Shellfish Immunology, 15(4), 325–331. https://doi.org/10.1016/S1050-4648(02)00176-6

Sritunyalucksana, K, Wongsuebsantati, K., Johansson, M. W., & Söderhäll, K. (2001). Peroxinectin, a cell adhesive protein associated with the proPO system from the black tiger shrimp, Penaeus monodon. Developmental & Comparative Immunology, 25(5–6), 353–363. https://doi.org/10.1016/S0145-305X(01)00009-X

Sritunyalucksana, K., & Söderhäll, K. (2000). The proPO and clotting system in crustaceans. Aquaculture, 191(1), 53-70. www.vliz.be/imisdocs/publications/ocrd/33409.pdf

Sun, J. J., Lan, J. F., Shi, X. Z., Yang, M. C., Yang, H. T., Zhao, X. F., & Wang, J. X. (2014). A fibrinogen-related protein (FREP) is involved in the antibacterial immunity of Marsupenaeus japonicus. Fish & Shellfish Immunology, 39(2), 296–304. https://doi.org/10.1016/j.fsi.2014.05.005

Sun, J. J., Lan, J. F., Zhao, X. F., Vasta, G. R., & Wang, J. X. (2017). Binding of a C-type lectin’s coiled-coil domain to the Domeless receptor directly activates the JAK/STAT pathway in the shrimp immune response to bacterial infection. PLoS Pathogens, 13(9), e1006626. https://doi.org/10.1371/journal.ppat.1006626

Sun, M., Li, S., Zhang, X., Xiang, J., & Li, F. (2020). Isolation and transcriptome analysis of three subpopulations of shrimp hemocytes reveals the underlying mechanism of their immune functions. Developmental & Comparative Immunology, 108, 103689. https://doi.org/10.1016/j.dci.2020.103689

Tanji, T., & Ip, Y. T. (2005). Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends in Immunology, 26(4), 193–198. https://doi.org/10.1016/j.it.2005.02.006

Tassanakajon, A., Amparyup, P., Somboonwiwat, K., & Supungul, P. (2011). Cationic antimicrobial peptides in penaeid shrimp. Marine Biotechnology, 13(4), 639–657. https://doi.org/10.1007/s10126-011-9381-8

Tassanakajon, A., Rimphanitchayakit, V., Visetnan, S., Amparyup, P., Somboonwiwat, K., Charoensapsri, W., & Tang, S. (2018). Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Developmental & Comparative Immunology, 80, 81–93. https://doi.org/10.1016/j.dci.2017.05.009

Tassanakajon, A., Somboonwiwat, K., & Amparyup, P. (2015). Sequence diversity and evolution of antimicrobial peptides in invertebrates. Developmental & Comparative Immunology, 48(2), 324–341. https://doi.org/10.1016/j.dci.2014.05.020

Tirasophon, W., Yodmuang, S., Chinnirunvong, W., Plongthongkum, N., & Panyim, S. (2007). Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antiviral Research, 74(2), 150–155. https://doi.org/10.1016/j.antiviral.2006.11.002

Van de Braak, C. B. T., Botterblom, M. H. A., Taverne, N. V., Van Muiswinkel, W. B., Rombout, J. H. W. M., & Van der Knaap, W. P. W. (2002). The roles of haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaeus monodon shrimp. Fish & shellfish immunology, 13(4), 293-309. https://doi.org/10.1006/fsim.2002.0409

Vargas-Albores, F., & Yepiz-Plascencia, G. (2000). Beta glucan binding protein and its role in shrimp immune response. Aquaculture, 191(1–3), 13–21. https://doi.org/10.1016/S0044-8486(00)00416-6

Vargas‐Albores, F., Gollas‐Galván, T., & Hernández‐López, J. (2005). Functional characterization of Farfantepenaeus californiensis, Litopenaeus vannamei and L. stylirostris haemocyte separated using density gradient centrifugation. Aquaculture Research, 36(4), 352–360. https://doi.org/10.1111/j.1365-2109.2004.01207.x

Vaseeharan, B., Prem Anand, T., Murugan, T., & Chen, J. C. (2006). Shrimp vaccination trials with the VP292 protein of white spot syndrome virus. Letters in Applied Microbiology, 43(2), 137–142. https://doi.org/10.1111/j.1472-765X.2006.01941.x

Vasta, G. R., Ahmed, H., Nita-Lazar, M., Banerjee, A., Pasek, M., Shridhar, S., Guha, P., & Fernández-Robledo, J. A. (2012). Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox. Frontiers in Immunology, 3, 199. https://www.frontiersin.org/articles/10.3389/fimmu.2012.00199/full

Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Pereyra-Morales, A., & Zenteno, E. (2009). Immunity mechanisms in crustaceans. Innate Immunity, 15(3), 179–188. https://doi.org/10.1177/1753425909102876

Vinay, T. N., Ray, A. K., Avunje, S., Thangaraj, S. K., Krishnappa, H., Viswanathan, B., Reddy, M. A., Vijayan, K. K., & Patil, P. K. (2019). Vibrio harveyi biofilm as immunostimulant candidate for high-health pacific white shrimp, Penaeus vannamei farming. Fish & Shellfish Immunology, 95, 498–505. https://doi.org/10.1016/j.fsi.2019.11.004

Wang, B., Zhao, J., Song, L., Zhang, H., Wang, L., Li, C., Zheng, P., Zhu, L., Qiu, L., & Xing, K. (2008). Molecular cloning and expression of a novel Kazal-type serine proteinase inhibitor gene from Zhikong scallop Chlamys farreri, and the inhibitory activity of its recombinant domain. Fish & Shellfish Immunology, 24(5), 629–637. https://doi.org/10.1016/j.fsi.2008.01.017

Wang, L., Yue, F., Song, X., & Song, L. (2015). Maternal immune transfer in mollusc. Developmental & Comparative Immunology, 48(2), 354–359. https://doi.org/10.1016/j.dci.2014.05.010

Wang, P. H., & He, J. G. (2019). Nucleic acid sensing in invertebrate antiviral immunity. International Review of Cell and Molecular Biology, 345, 287–360. https://doi.org/10.1016/bs.ircmb.2018.11.002

Wang, P. H., Wan, D. H., Pang, L. R., Gu, Z. H., Qiu, W., Weng, S. P., Yu, X. Q., & He, J. G. (2012). Molecular cloning, characterization and expression analysis of the tumor necrosis factor (TNF) superfamily gene, TNF receptor superfamily gene and lipopolysaccharide-induced TNF-α factor (LITAF) gene from Litopenaeus vannamei. Developmental & Comparative Immunology, 36(1), 39–50. https://doi.org/10.1016/j.dci.2011.06.002

Wang, R., Lee, S. Y., Cerenius, L., & Söderhäll, K. (2001). Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. European Journal of Biochemistry, 268(4), 895–902. https://doi.org/10.1046/j.1432-1327.2001.01945.x

Wang, X. W., & Wang, J. X. (2013). Diversity and multiple functions of lectins in shrimp immunity. Developmental & Comparative Immunology, 39(1–2), 27–38. https://doi.org/10.1016/j.dci.2012.04.009

Wang, Y. C., Chang, P. S., & Chen, H. Y. (2007). Tissue expressions of nine genes important to immune defence of the Pacific white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 23(6), 1161–1177. https://doi.org/10.1016/j.fsi.2007.04.004

Wu, C., Söderhäll, I., Kim, Y. A., Liu, H., & Söderhäll, K. (2008). Hemocyte‐lineage marker proteins in a crustacean, the freshwater crayfish, Pacifastacus leniusculus. Proteomics, 8(20), 4226-4235. https://doi.org/10.1002/pmic.200800177

Xu, J., Han, F., & Zhang, X. (2007). Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Research, 73(2), 126–131. https://doi.org/10.1016/j.antiviral.2006.08.007

Xu, Y. H., Bi, W. J., Wang, X. W., Zhao, Y. R., Zhao, X. F., & Wang, J. X. (2014). Two novel C-type lectins with a low-density lipoprotein receptor class A domain have antiviral function in the shrimp Marsupenaeus japonicus. Developmental & Comparative Immunology, 42(2), 323–332. https://doi.org/10.1016/j.dci.2013.10.003

Yedery, R. D., & Reddy, K. V. R. (2009). Identification, cloning, characterization and recombinant expression of an anti-lipopolysaccharide factor from the hemocytes of Indian mud crab, Scylla serrata. Fish & Shellfish Immunology, 27(2), 275–284. https://doi.org/10.1016/j.fsi.2009.05.009

Yeh, M. S., Tsai, W. L., & Cheng, W. (2013). Identification and cloning of the second type transglutaminase from Litopenaeus vannamei, and its transcription following pathogen infection and in relation to the haemolymph coagulation. Fish & Shellfish Immunology, 35(5), 1613–1623. https://doi.org/10.1016/j.fsi.2013.09.002

Publicado
2022-01-20
Cómo citar
Martín Ríos, L., Espinosa López, G., & Carrillo Farnés, O. (2022). Sistema inmune de camarones peneidos de cultivo: Una revisión. Revista De Producción Animal, 34(1). Recuperado a partir de https://revistas.reduc.edu.cu/index.php/rpa/article/view/e4036
Sección
Acuicultura

Artículos más leídos del mismo autor/a